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Notation.

• The formulas F ∼ A and F ∈U A means that F is a uniformly random element of A.

• We use only uniform distribution, no other probability distributions are considered.

Definition (Perfect matching polytope): PM = conv{χM ∈ RE | M ⊆ E is a perfect matching}
Edmonds

= {x ∈ RE | x(δ(v)) = 1 ∀v ∈ V ; x(δ(U)) ≥ 1 ∀U ⊆ V, |U | odd ; xe ≥ 0 ∀e ∈ E}.

Definition (Extension complexity): The extension complexity xc(P ) of a polytope P is defined
as the minimal number of facets of a higher dimensional polytope Q s.t. there is a linear projection π
satisfying π(Q) = P .

Theorem 1 (Rothvoß): For all n ∈ N, xc(PM) ≥ 2Ω(n) in the complete n-node graph.

Fact: If P is a linear projection of a face of P ′, then xc(P ) ≤ xc(P ′).

Corollary 2: Because Yannakakis described a linear projection of a face of PTSP of O(n)-node com-
plete graph onto PM of n-node complete graph, we have xc(PTSP ) ≥ 2Ω(n), too.

Definition (Slack matrix): Let P = conv{x1, . . . , xv} = {x ∈ Rn | Ax ≤ b}, where A ∈ Rf×n. We
define the slack matrix S ∈ Rf×v

≥0 as Sij = bi − Aixj, i.e. Sij is the slack of the j-th vertex in the
i-th inequality.

Definition (Non-negative rank): The non-negative rank rk+(S) of a matrix S is defined as
rk+(S) = min{r | (∃U ∈ Rf×r

≥0 )(∃V ∈ Rr×v
≥0 )(S = UV )}.

Theorem 3 (Yannakakis 91): Let P be a polytope with vertices {x1, . . . , xv}, P = {x ∈ Rn | Ax ≤
b}, let S be its slack matrix. Then

• xc(P ) = rk+(S)

• Moreover, the minimal extended formulation of P can be obtained by factoring S = UV , where
U, V come from the definition of rk+, and writing P = {x ∈ Rn | (∃y ≥ 0)(Ax+ Uy = b)}

Lemma 4 (Hyperplane separation lower bound): Let S ∈ Rf×v
≥0 be the slack matrix of a polytope

P and W ∈ Rf×v be any matrix. Then

xc(P ) ≥ ⟨W,S⟩
∥S∥∞ · α

where α = max{⟨W,R⟩ | R ∈ {0, 1}f×v rank 1-matrix}.
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Notation.

• Choose a parameter k > 3 odd, t = m+1
2

(k − 3) + 3 is an odd magic constant.

• Mall = {M ⊆ E | M is a perfect matching}

• Uall = {U ⊆ V | |U | = t}

• Ql = {(U,M) ∈ Mall × Uall | |δ(U) ∩M | = l}, µl the uniform measure on Ql

• Rectangle R = U ×M where U ⊆ Uall and M ⊆ Mall

Lemma 6: For all k > 3 odd and for all rectangles R with µ1(R) = 0 we have that µ3(R) ≤
400
k2

· µk(R) + 2−δm, where δ = δ(k) > 0 is a constant.

Definition (Partition): A partition is a tuple T = (A =
∪̇m

i=1 Ai, C,D,B =
∪̇m

i=1Bi) with V =
A ∪̇ C ∪̇D ∪̇B, |C| = |D| = k and |Ai| = k − 3, |Bi| = 2(k − 3) for every i ∈ [m].

Notation.

• E(T ) =
∪̇m

i=1E(Ai) ∪̇ E(C ∪D) ∪̇
∪̇m

i=1E(Bi)

• M(T ) = {M ∈ M | M ⊆ E(T )}

• Mall(T ) = {M ∈ Mall | M ⊆ E(T )}

• U(T ) = {U ∈ U | U ⊆ A ∪ C with |U ∩ Ai| ∈ {0, |Ai|} ∀i ∈ [m]}

• Uall(T ) = {U ∈ Uall | U ⊆ A ∪ C with |U ∩ Ai| ∈ {0, |Ai|} ∀i ∈ [m]}

• pM,T (H) = PrM∼Mall(T )[M ∈ M | H ⊆ M ]

• pexM,T (H) = PrM∼Mall(T )[M ∈ M | M ∩ δ(C) = H]

• pU ,T (c) = PrU∼Uall(T )[U ∈ U | c ⊆ U ], where c ⊆ C

• pexU ,T (c) = PrU∼Uall(T )[U ∈ U | C ∩ U = c], where c ⊆ C

• pexU ,T (H) = pexU ,T (V (H) ∩ C) for a matching H ⊆ C ×D

Definition (M-good): Let T be a partition and H a 3-matching in C × D. Then (T,H) is called
M-good ⇐⇒ 0 < 1

1+ϵ
pM,T (H) ≤ pM,T (F ) ≤ (1 + ϵ)pM,T (H) for every k-matching F ⊆ E(C ∪ D)

s.t. H ⊆ F . Otherwise, it is called M-bad.

Definition (U-good): Let T be a partition and H a 3-matching in C × D. Then (T,H) is called
U-good ⇐⇒ 0 < 1

1+ϵ
pexU ,T (H) ≤ pexU ,T (C) ≤ (1 + ϵ)pexU ,T (H). Otherwise, it is called U-bad.

Definition (Good): If (T,H) is both U-good and M-good, we call it just good.

Lemma 7: If (T,H) is M-good =⇒ 1
1+ϵ

pM,T (H) ≤ pexM,T (H) ≤ (1 + ϵ)pM,T (H).

Lemma 8: If T is a partition and F ⊆ C ×D is a k-matching, then PrH∼(F3)
[(T,H) is good] ≤ 100

k2
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Figure 1: Visualization of a partition T with all edges E(T ).
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Figure 2: Visualization of a partition T together with one matching M ∈ M(T ) and one
cut U ∈ U(T ).
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