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Let A ∈ [−1; 1]m×n be a matrix. We consider a quadratic optimization problem where we
maximize pTAq over probability distributions p and q subject to linear constraints.

Basic definitions:
• ∆n = {p ∈ [0; 1]n : ‖p‖1 =

∑n
i=1 pi = 1} is the set of n-dimensional probability

distributions,
• conv(A) is the convex hull of the columns of A,
• ε-net for A is the set of vectors S ⊆ Rm such that for all v ∈ conv(A) there is a vector
u ∈ S satisfying ‖v − u‖∞ ≤ ε,
• The cover number Nε(A) is the minimal size of an ε-net for A.
Approximation framework: Given an efficient enumerator for an ε-net S solve for each

u ∈ S the linear program max pTu over p ∈ ∆m, q ∈ ∆n subject to original linear constraints
and ‖u−Aq‖∞ ≤ ε. This yields a solution which is within 2ε of the optimal.

Application: Approximate Nash equilibria

In a 2-player game let A,B ∈ [−1; 1]m×n be payoff matrices for Alice and Bob respectively, i.e.,
Ai,j is payoff for Alice when she plays strategy i and Bob plays strategy j. Let p ∈ ∆m, q ∈ ∆n

be mixed strategies for Alice and Bob respectively. The pair of strategies p, q is a Nash
equilibrium (NE) if it satisfies

pTAq ≥ eTi Aq ∀i ∈ [m] = {1, . . . ,m}

pTAq ≥ pTAej ∀j ∈ [n] = {1, . . . , n},
i.e., neither Alice, nor Bob can improve his or her payoff by changing the mixed strategy

to a different pure strategy (assuming that the other one stick to his or her strategy). The
ε-Nash equilibrium is similar to NE, but they can improve by at most ε.

Theorem 1. Using a deterministic (or Las Vegas randomized) algorithm for enumerating
ε/2-net for A+B (running in time t) we can find an ε-Nash equilibrium in time t ·poly(mn).

Upper bounds on the cover number

Quasi-polynomial upper bound

Theorem 2. Let A ∈ [−1; 1]m×n be a matrix. Then Nε(A) ≤
(
n+k
k

)
< nk where k =

2 ln(2m)/ε2.
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Upper bound using VC dimension

Definition. Let A ∈ Rm×n be a matrix. Let C = {c1, . . . , ck} ⊆ [n] be a subset of columns of
A. We say that A shatters C if there are real numbers (tc1 , . . . , tck) such that for any D ⊆ C
there is a row i with Ai,c < tc for all c ∈ D and Ai,c > tc for all c ∈ C \D.

Let VC(A) be the maximal size of a set of columns shattered by A (Vapnik–Chervonenkis
dimension or pseudo-dimension).

Theorem 3. Let A ∈ [−1; 1]m×n be a matrix with VC(A) = d. Then

Nε(A) ≤ nO(d/ε2).

Lower bounds on the cover number

Lemma 4. Let A ∈ {−1; 1}m×n be a sign matrix and F be a family of subsets of [n] such
that for every distinct F, F ′ ∈ F

1. the columns of A in F ∪ F ′ are shattered,
2. |F ∩ F ′| ≤ (1− δ)|F |.

Then Nδ(A) ≥ |F|.

Theorem 5. Let A ∈ {−1; 1}m×n be a sign matrix. Then N1/4(A) ≥ 2Ω(VC(A)).

Theorem 6. For almost all sign matrices A ∈ {−1; 1}n×n it holds that N0.99(A) ≥ nΩ(logn).
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