On the (Non) NP-Hardness of Computing Circuit
Complexity

Cody D. Murray and Ryan Williams
presented by Radek Husek

Complexity ZOO

Complexity class Characterization

P polytime deterministic algorithms

RP polytime randomized algorithms with bounded one-size error!
BPP polytime randomized algorithms with bounded two-size error
/PP randomized algorithms with average polytime complexity
ACO polysize circuits with unbounded fan-in and constant depth?
ACO[m] ACO + “mod m” gates

E TIME(20(M)

EXP TIME(2"”") deterministic algorithms

P /poly polytime with polynomial advise

The “N” prefix denotes non-deterministic variant of given complexity class: Input of non-
deterministic algorithm is (except instance of given problem) a “certificate”. For every
YES-instance there exists certificate which makes algorithm answer yes, and for NO-
instance no certificate can convince algorithm to answer yes.

Given complexity class C, language L belongs into class i.0.-C' (infinitely ofterl) ifft LN
{0,1}" = L' n{0,1}" for some L’ € C and infinitely many n, and coC' :={L: L € C}.

Minimum Circuit Size Problem Complexity

Definition 1. The MINIMUM CIrRcUIT SiZE PROBLEM (MCSP):

Input is (T, k) where T € {0,1}" is truth-table of boolean function on log, n variables and
k € N (encoded binary or unary). Output is YES if there is circuit of complexity® at most
k which evaluates function T', and NO otherwise.

We're encoding MCSP as string Tz, where |T| = max,ey {2" < |Tz|} and x is binary
encoding of parameter k.*

We will use machine model with random access to input such as random-access Turing
machine.

LOnly false-negatives.

2We allow only AND, OR and NOT gates.

3Complexity of is circuit is number of its gates and we're allowed to use AND, OR and NOT gates
with fan-in at most 2.

4This encoding limits possible values of k but it’s not a problem because every Boolean function on
n variables has circuit complexity at most (1 + 0(1))2"/n (Lupanov 59).

Definition 2. An algorithm R : ¥* x ¥* — {0,1,*} is TIME(¢(n)) reduction from L
to L' if there is constant ¢ > 0 such that Vx € ¥*:

e R(z,i) runs in O(t(|z])) for alli € {0, 1}f2010g2|wﬂ’

o There is an l, < |x|°+ ¢ such that R(x,4) € {0,1} for alli <1, and R(z,i) = * for
all i > 1, and

e r€ L& R(x,)R(x,2) ... R(x,l,) € L.

Proposition 3 (Skyum & Valiant 85; Papadimitriou & Yannakakis 86). SAT, Ver-
tex Cover, Independent Set, Hamiltonian Path and 3-Coloring are NP-complete under
TIME(poly(log(n))) reductions.

Theorem 4. For every § < 3, there is no TIME(n®) reduction from PARITY to MCSP.

Hence MCSP is not AC0[2]-hard under TIME(n®) reductions.

Theorem 5. If MCSP is NP-hard under polytime reductions, then EXP # NP NP /e,
Consequently EXP # ZPP.

Theorem 6. If MCSP is NP-hard under logspace reductions, then PSPACE # ZPP.

Theorem 7. If MCSP is NP-hard under logtime-uniform ACO reductions, then NP ¢
P ooty and E ¢ i.0.-SIZE(2°") for some § > 0. As consequence P = BPP.

Proofs

Lemma 8 (Williams 2013). There is a universal ¢ > 1 such than for any binary string
T and any substring S of T, CC(fs) < CC(fr)+ clog|T|.

Theorem 9 (Hastad 86). For every k > 2, PARITY cannot be computed by circuits with
AND, OR and NOT gates of depth k and size go(n!/=1),

Definition 10 (Cabanets & Cai 2000). A reduction from language L to MCSP is na-
tural if the size of all output instances and the size parameters k depend only on length
of the input to the reduction.

Claim 11. Let € > 0. If there is TIME(n'~°) reduction from PARITY to MCSP, then
there is TIME(n'~¢log® n) natural reduction from PARITY to MCSP. Furthermore, the
value of k in this natural reduction is O(n'~*poly(log(n))).

Claim 12. If there is a TIME(n'=¢) reduction from PARITY to MCSP, then there is a
¥y TIME(n'~*poly(log(n))) algorithm for PARITY.

Theorem 13. If every sparse language in NP has polytime reduction to MCSP, then
EXP C P /poy = EXP = NEXP.

