Number of cliques in graphs with forbidden subdivison

Choongbum Lee and Sang-il Oum presented by Radek Hušek

Well-known facts

Definition 1. Graph G is k-degenerated if every induced subgraph $G' \subseteq G$ contains vertex of degree at most k.

Theorem 2. Let G be K_t -minor-free graph. Then G has average degree at most $ct\sqrt{\ln t}$.

Theorem 3. Let G be K_t -subdivision-free graph. Then G has average degree at most $10t^2$.

If graph is *H*-minor-free (resp. *H*-subdivision-free) then all of its subgraphs are. Therefore K_t -minor-free graphs are $(ct\sqrt{\ln t})$ -degenerated and K_t -subdivision-free graphs are $(10t^2)$ -degenerated.

Let G be n-vertex d-degenerate graph $(n \ge d)$. Then G has at most $2^d(n-d+1)$ cliques.

Theorem 4. Let G be K_t -minor-free (resp. K_t -subdivision-free) graph. Then G has at most $2^{ct\sqrt{\ln t}}n$ (resp. $2^{10t^2}n$) cliques.

Improving upper bound

Theorem 5. Let G be n-vertex graph without K_t -subdivison. Then G has at most $2^{94t}n$ $(2^{5t+o(t)}n asymptotically)$ cliques.

```
1 Function buildCST(G)
     Input: Graph G
     Output: Clique search tree of G
     Create tree T with single node r as root. Set label L(r) \leftarrow V(G).
\mathbf{2}
     while |V(G)| > 0 do
3
        v \in V(G) s.t. v has minimum degree
\mathbf{4}
        Add buildCST(G[N(v)]) as child of r and set v as label for the new edge.
\mathbf{5}
        G \leftarrow G - v
6
     end while
7
     return T
8
9 end
```

Algorithm 1: Creation of Clique search tree.

Observation 6. Let T be clique search tree of G. Then each node of T corresponds to clique in G consisting of label of edges on path from root to given node.

Definition 7. Rooted subtree is subtree containing root. Boundary of rooted subtree T' are all nodes of T' that are adjacent to node not in T'.

Definition 8. Graph G is (β, N) -locally sparse if every set X of at least N vertices contains vertex of degree at most $\beta |X|$ in G[X].¹

Lemma 9. Let G be n-vertex K_t -subdivision-free graph. If G has minimum degree at least $\frac{9}{10}n$, then $n \leq \max\left\{\frac{20}{11}t, \frac{t^2}{5}\right\}$ and G is $\left(1 - \frac{n}{2t^2}, \frac{20}{11}t\right)$ -locally sparse.

Lemma 10. Let G be n-vertex K_t -subdivision-free graph with $n \leq \frac{t^2}{5}$. If G is $(1 - \frac{n}{2t^2}, \frac{20}{11}t)$ -locally sparse, then G contains less than $t2^{5t}$ cliques.

¹Slightly weaker than usual definition.