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Some notation
1. A P2t(n) is a set of all subsets of [n] of size at most 2t.
2. Nn≤t is a set of all monomials in n variables of degree at most t.

(Here 0 ∈ N.)

3. ||A||F is the Frobenius norm, defined as
√

Tr(ATA).
4. For a polynomial p(x) and a monomial α, [α]p is the coefficient

of the monomial α.
5. vec(p) is a vectorization of a polynomial p – vec(p) is thus a

vector with each monomial α of p contributing a real number
[α]p.

Semidefinite programming
D:A symmetric matrix M ∈ Rn×n is positive semidefinite ≡ ∀z ∈
Rn : zTMz ≥ 0. We write M � 0. Equivalently, M is positive
semidefinite iff it has a square root, i.e. there exists U such that
UTU = M . We write U =

√
M .

D(Sk+): The set (cone) of all positive semidefinite matrices in Rk×k

will be denoted Sk+.

D:A linear operator • : Rn×n × Rn×n → R is defined as A • B =
Tr(ATB).

D:A semidefinite program is a convex optimization program of the
form:

maxC •X subject to constraints Ai •X = bi and X � 0.

D:For a program of the form maxC •X,Ai •X = bi, X � 0, we can
define a dual program min bT y subject to

∑m
i=1 yiAi − C � 0.

Under mild conditions (if the primal is feasible, with finite value, and
it has at least one positive definite solution) it holds that the values
of the primal and dual semidefinite programs coincide.

Extended formulations
D(Linear lift): Consider some polytope P . We say that a polytope Q
is a linear lift of P if P is an image of Q under some linear map. We
measure the size of the lift as the number of facets. The polytope Q
is also called extension of P .

D(PSD lift): We say that a polytope P of dimension n admits a
positive semidefinite lift of size k if there exists an affine subspace
L ⊆ Rk×k and a projection π : Rk×k → Rn such that P = π(L∩Sk+).

In other words, we say that P has a positive semidefinite lift of size k
if we can get P as some projection of a structure that is both inside
an affine space (A • X = b) and inside the set of all psd matrices
(X � 0).

D: We define a polytope Corrn ≡ conv(x · xT |x ∈ {0, 1}n). Corrn
played an important role in the paper of Fiorini, Massar, Pokutta,
Tiwary and de Wolf; bounds on extension complexity of Corrn im-
ply bounds on the cut polytope, TSP polytope and independent set
polytope, among others.

D(PSD rank): We say that M ∈ Rp×q+ admits a rank-r psd fac-
torization if there exist two lists of positive semidefinite matri-
ces {Ai ∈ Sr+|i ∈ [p]} and {BjSr+|j ∈ [q]} such that Mij =∑r
z=1〈(Ai)x, (Bj)]〉 = Tr(AiBj).

D: We say that M ∈ Rp×q+ has psd rank r if r is the smallest number
such that M admits a rank-r psd factorization. We say that a poly-
tope P has psd rank r if an associated slack matrix S has psd rank
r.

T(Bound on psd rank):

rkpsd(Corrn) ≥ 2Ω(n2/13).

D(From a function to a matrix):For a function f : {0, 1}m → R and

a number n ≥ m, we define the following matrix Mf
n ∈ R

(
n
m

)
×2n

+ :

Mf
n (S, x) = f(xS) = f(x restricted to the positions in S)

Clm: If f : {0, 1}m → R+ is a non-negative quadratic polynomial

over {0, 1}m, then for any n ≥ m it holds that Mf
n is a submatrix of

some slack matrix associated with Corrn.

T(Large PSD rank ⇔ large lift): For every n, k ≥ 1 every polytope
P ⊆ Rn and every slack matrix S associated to P , it holds that
rkpsd(S) ≤ k if and only if P admits a positive semidefinite lift of size
k.

From the previous Theorem and Claim, we know that to finish the
proof of Theorem Bound on a psd rank, we need a good lower bound

on rkpsd(Mf
n ).

Lasserre hierarchy
Notation: Let Pt([n]) := {I ⊆ [n] | |I| ≤ t} be the set of all index
sets of cardinality at most t and let y ∈ RP2t([n]) be a vector with
entries yI for all I ⊆ [n] with |I| ≤ 2t.

D(Moment matrix): Mt+1(y) ∈ RPt+1([n]) × Pt+1([n]):

Mt+1(y))I,J := yI∪J ∀|I|, |J | ≤ t+ 1.

D(Moment matrix of slacks): For the `-th (` ∈ [m]) constraint of the
LP AT x ≥ b, we create M`

t (y) ∈ RPt([n])×Pt([n]):

M`
t (y)I,J := (

n∑
i=1

AliyI∪J∪{i})− blyI∪J

D(t-th level of the Lasserre hierarchy): Let K = {x ∈ Rn | Ax ≥ b}.
Then Last(K) is the set of vectors y ∈ RP2t([n]) that satisfy

Mt+1(y) � 0; M`
t (y) � 0 ∀` ∈ [m]; y∅ = 1.

Furthermore, let Lasproj
t := {(y{1}, . . . , y{n}) | y ∈ Last(K)} be the

projection on the original variables.

Intuition: Mt+1(y) � 0 ensures consistency (y behaves locally as
a distribution) while M`

t (y) � 0 guarantees that y satisfies the l-th
linear constraint.

We call any solution y a pseudo-distribution or a pseudo-density of
vertices of the polytope. In our {0, 1}n setting, it is a pseudo-density
on {0, 1}n.

Note: In our case, we only deal with problems of the form max f(x)
subject to x ∈ {0, 1}n, and so we can simplify our Lasserre system to:

max f(y{1}, y{2}, . . . y{n}) s.t. Mt+1(y) � 0; y∅ = 1.

Sum of Squares upper bounds
D: For a polynomial f, f : {0, 1}n → R+, a sum of squares program
of degree d is a program of the form:

min ρ s. t. ∀x ∈ {0, 1}n : ρ− f(x) =
k∑
i=1

gi(x)2;

∀i ∈ [k] : deg(gi) ≤ d/2.

The number ρ is called the sum of squares upper bound of degree d.

Original idea: verify that ∀x : ρ − f(x) ≥ 0 using a sum of squares
(which is always non-negative).

Clm: We can compute the sum of squares upper bound using a
semidefinite program of size nO(d).

The semidefinite program is as follows: the variable matrix X is in-
dexed by a pair of monomials α, β of degree at most d/2 each. The
program itself is:

min ρ s. t. ∀γ ∈ Nn≤d :
∑

α,β|α+β=γ

Xα,β = [γ](ρ− f); X � 0.

L(Eye-opening lemma): A sum of squares semidefinite program of
degree d is dual to the t/2-th level of the Lasserre hierarchy.

Sum of squares vs. PSD rank
D: A degree of a function {0, 1}m → R will be the degree of the unique
multilinear polynomial agreeing with f on every point of {0, 1}m.

D(sos degree): Consider a non-negative function f : {0, 1}m → R+.
We say that f has a sum-of-squares certificate of degree d if there
exist functions g1, . . . , gk : {0, 1}m → R such that deg(gi) ≤ d/2 and

f(x) =
∑k
i=1 gi(x)2 for all x ∈ {0, 1}n.

We say that f has sos degree d′ and write degsos(f) = d′ if d′ is the
minimal degree of a sum-of-squares certificate for f .

T(Main theorem): For every m ≥ 1 and f : {0, 1}m → R+, there
exists a constant C > 0 such that the following holds: For n ≥ 2m, if
degsos(f) = d+ 2, then

1 + n1+d/2 ≥ rkpsd(Mf
n ) ≥ C

(
n

logn

)d/4
.



The Main theorem gives us a good lower bound on f if degsos(f) =
d + 2. We finalize the proof of Theorem Bound on psd rank by ap-
plying the following:

T(Grigoriev): For every odd integer m ≥ 1, the following function

f : {0, 1}m → R has degsos(f) ≥ m+ 1:

f(x) =

(
m

2
−

m∑
i=1

xi

)2

− 1/4.
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