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Known upper 2O(nd d
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e log(n)) and lower 2Ω(nb d

2
c) bound for the number of combinatorially distinct n-vertex triangula-

tions of d-spheres. For 3-spheres gap very big, we show how to construct at least 2Ω(n2) such triangulations.

Theorem. 1.1 For each n ≥ 1 there exists a 3-dimensional polyhedral sphere with 5n + 4 vertices, such that n2 of its
facets are combinatorially equivalent to a bipyramid.

Corollary. 1.2 The 3-sphere admits 2Ω(n2) combinatorially distinct triangulations on n vertices.

A Few Terms from Algebraic Topology

• simplex C = {θ0u0 + · · · + θkuk|θi ≥ 0, 0 ≤ i ≤ k,
∑k
i=0 θi = 1} – generalization of triangle and tetrahedron to

arbitrary dimensions

• simplicial complex X is a set of simplexes that satisfies

– any face of a simplex from X is also in X .
– the intersection of any two simplexes σ1, σ2 ∈ X is a face of both σ1 and σ2.

• face is the convex hull of any nonempty subset of the n+1 points that define an n-simplex

• X is said to be pure if all its maximal (w.r.t. inclusion) faces have the same dimension

• facet of a simplex is a face of maximal dimension (for a simplex n− 1-faces)

• facet of a simplicial complex is any simplex, which is not par of any larger simplex

• k-complex if all facets are k-faces i.e. faces of dimension k

• ∂X – the boundary complex of X is a subcomplex of X which contains those faces which are in ! one facet of X

• a face F is interior if F 6∈ ∂X

• link of a face F is a subcomplex {T ∈ X ;T ∩ F = ∅;T ∪ F ∈ X}

• star of a face F is a subcomplex {T ∈ X ;F ⊆ T ;Tfacet ∈ X}

• two complexes are said to be combinatorially equivalent / isomorphic if their lattices (partial order by set
containment of faces) are isomorphic.

• n-sphere Sn =
{
x ∈ Rn+1 : ‖x‖ = r

}
• n-ball Bn =

{
x ∈ Rn+1 : ‖x‖ ≤ r

}
• (n− 1)-sphere = ∂ n-ball

• we will consider complexes which are only homeomorphic to spheres & balls

• moment curve in Rd is a curve αd : R→ Rd defined αd(t); = (t, t2, t3, . . . , td)

• cyclic d-polytope C(n, d) is the convex hull of the n points αd(1), . . . , αd(n)

Lemma. Gail’s evenness condition All facets of C(n, d) are (d− 1)-simplices. Furthermore, for any set of d integers
I ⊂ [n], the convex hull conv(αd(I)) is a facet of C(n, d) iff for every x, y ∈ [n] \ I, there are an even number of elements
z ∈ I satisfying x < z < y.



Construction of the Polyhedral Sphere
• we take cyclic 4-polytope C(4n+ 4, 4)

• P (n) polyhedral complex comb. isomorphic to ∂C(4n+ 4, 4)

• P (n) is homeomorphic to a 3-sphere

• A(n) = {m ∈ [n+ 2, 3n+ 1];m = 2k, k ∈ Z}

• facets of P (n)

* I(a, u, 1) := {a− u− 1, a− u, a+ u, a+ u+ 1}
* I(a, u, 2) := {a− u− 1, a− u, a+ u+ 1, a+ u+ 2}
* I(a, u, 3) := {a− u, a− u+ 1, a+ u+ 1, a+ u+ 2}

Lemma. For all a ∈ A(n), u, u′ ∈ [n], i, j ∈ [3], if u′ ≤ u− 1 then

I(a, u, i) ∩ I(a, u′, j) ⊆


{a− u, a+ u, a+ u+ 1}, i = 1

{a− u, a+ u+ 1}, i = 2

{a− u, a− u− 1, a+ u+ 1}, i = 3

• B0(a) := {I(a, u, 1);u ∈ [n], i ∈ [3]}, B(a) is the closure of B0(a) under subsets

• shelling is an ordering F1, F2, . . . Fp of the maximal simplexes of X such that the complex Bk :=
(⋃k−1

i=1 Fi

)
∩ Fk

is pure and (dimFk − 1)-dimensional for all k = 2, 3, . . . p.

Lemma. 3.2 For each a ∈ A(n), the simplicial complex B(a) is a shellable simplicial 3-ball.

Lemma. 3.3 For distinct each a, a′ ∈ A(n), the intersection B(a) ∩B(a′) does not contain a 2-face of P (n).

Lemma. 3.4 For distinct a, a′ ∈ A(n), we have B(a) ∩B(a′) ⊂ ∂B(a) ∩ ∂B(a′).

• some new notation:
x−(a, u, 1) := a− u− 1 x+(a, u, 1) := a+ u
x−(a, u, 2) := a− u− 1 x+(a, u, 2) := a+ u+ 2
x−(a, u, 3) := a− u+ 1 x+(a, u, 3) := a+ u+ 2

Lemma. 3.5 For every a ∈ A(n), the 2-faces of the boundary complex ∂B(a) are exactly the triangles
Iσ(a, u, i) ∪ {x−σ(a,u,i)}, for u ∈ [n], i ∈ [3], σ ∈ {+,−}.

• E(a, u) := {a− u, a+ u+ 1}

Lemma. 3.6 The interior edges of B(a) are exactly the edges {E(a, u) : u ∈ [n]}.

• Tσ(a, u) := Iσ(a, u, 1) ∪ {x−σ(a, u, 1)} triangles without E(a, u) = {a− u, a+ u+ 1}

• D(a, u) := closure of {T−(a, u), T+(a, u)} under subsets (a 2-ball)

• R(a, u) := T−(a, u) ∩ T+(a, u) = {a− u− 1, a+ u} (unique interior edge in D(a, u))

Lemma. 3.7 For (a, u) 6= (a′, u′) the disks D(a, u) and D(a′, u′) intersect in a single face. When a = a′, this intersection
lies on the boundary of both disks.


