Handouts: Analytical Approach to Parallel Repetition

Elazar Goldenberg

April 30, 2015

1 Notations and definitions

Definition 1.1. 1. A one round two prover game G game is specified by a bipartite graph with vertex sets U and V such that each edge (u, v) is endowed with a constraint $\pi_{(u,v)} \subset \Sigma \times \Sigma$.

$$val(G) := \max_{f,g} val(G, f, g) := \max_{f,g} = \Pr_{(u,v)}[(f(u), g(v)) \in \pi_{u,v}].$$

- 2. A game is called projection game if for every edge (u, v) and for every possible answer of Bob $\beta \in \Sigma$, there exists a single answer $\alpha \in \Sigma$ for \mathcal{A} such that the constraint $\pi_{(u,v)}$ is satisfied.
- 3. In the k-folded parallel repetition of the game $G^{\otimes k}$ the referee chooses k edges $(u_1, v_1), \cdots (u_k, v_k)$ independently from G, and sends (u_1, \cdots, u_k) to \mathcal{A} , and (v_1, \cdots, v_k) to \mathcal{B} . Each of the players answers with a k-tuple string and they win if their answers satisfies each of the constraints on these edges.

Theorem 1.2 (Parallel Repetition Theorem). For any projection game G, if $val(G) = 1 - \epsilon$ then $val(G^{\otimes k}) \leq (1 - c\epsilon^2)^{k/2}$.

2 Linear Algebra Notations:

Denote by $L(U \times \Sigma)$ the set of real-valued functions defined on $U \times \Sigma$. An assignment for \mathcal{A} is specified by a function $g \in L(U, \Sigma)$ satisfying (i) $g(u, \alpha) \ge 0$, (ii) for every $u \in U$: $\sum_{\alpha, u} g(u, \alpha) = 1$ (Note that \mathcal{A} maybe non-deterministic, on a query u she outputs α with probability $\frac{g(u, \alpha)}{\sum_{\alpha'} g(u, \alpha')}$).

For every projection game G we define a linear operator from $L(V \times \Sigma)$ to $L(U \times \Sigma)$ by:

$$Gf(u, \alpha) = \mathbb{E}_{v|u} \sum_{\beta: \alpha \leftarrow \beta} f(v, \beta), \text{ where } \alpha \leftarrow \beta \text{ means that } (\alpha, \beta) \in \pi(u, v)$$

We define an inner product $\langle g, g' \rangle = \mathbb{E}_u \sum_{\alpha} g(u, \alpha) g'(u, \alpha)$.

Claim 2.1. 1. $Gf(u, \alpha) \ge 0$, $\sum_{\alpha} f(u, \alpha) \le 1$.

- 2. $val(G, f, g) = \langle g, Gf \rangle$.
- 3. For any two projections games G, H, let $f \in L(U \times \Sigma \times U' \times \Sigma')$ we define:

$$G \otimes Hf(u, \alpha, u', \alpha') = \mathbb{E}_{v|u, v'|u'} \sum_{\beta: \alpha \leftarrow \beta, \alpha' \leftarrow \beta'} f(v, \beta, v', \beta'),$$

then $\operatorname{val}(G \otimes H, f, g) = \langle g, (G \otimes H) f \rangle$.

Definition 2.2 (Collision Value and Symmetrized Game). Let G be a projection game, and let f be an assignment to \mathcal{B} :

$$\|Gf\| = \langle Gf, Gf \rangle^{1/2}.$$
$$\|G\| = \max_{f} \|Gf\|.$$

Given a projection game G, define G_{sym} to be the following game. A referee chooses $u \in U$, and then v, v'|u independently, and sends v to \mathcal{A} and v' to \mathcal{B} . \mathcal{A} responds with β and \mathcal{B} with β' . The referee accepts iff there exists α such that $\alpha \leftarrow \beta$ and $\alpha \leftarrow \beta'$ (the values collide).

Consider the (weighted) graph induced by the G_{sym} , i.e. V is the set of vertices. The probability we assign to (v, v') is the probability induced by first picking $u \in U$ and then $v, v' \sim u$. G is called λ -expander if the induced graph of G_{sym} is λ -expander.

- Claim 2.3. 1. $val(G_{sym}) = ||G||$.
 - 2. $val(G) \le ||G|| \le val(G)^{1/2}$.
 - 3. $val(||G \otimes H||) \le val(||H||)$.

3 Proof of the Main Result

Lemma 3.1 (Main Lemma). Let G, H be any projection games satisfying $val(G) = 1 - \epsilon$, then:

$$||G \otimes H||^2 \le (1 - c\epsilon^2) ||H||^2$$
.

For every projection game we define the following quantities:

$$\rho_G := \sup_H \frac{\|G \otimes H\|}{\|H\|},$$
$$\lambda_+(G) := \max_{h>0} \frac{\|Gh\|}{\|Th\|}.$$

Where T is the following trivial game on which the referee picks $(v, v') \in V$ and accepts iff \mathcal{A} answers 1.

- **Lemma 3.2** (Main Technical Lemma). 1. Let G, H be any projection games, then: $||G \otimes H|| \le \lambda_+(G) ||H||$.
 - 2. Let G be a λ -expander projection game, then if $\lambda_+(G) > 1 \delta$ then $||G|| > 1 O(\delta^2/\lambda)$.