A simple algorithm for random colouring $G_{n,d/n}$ using $(2 + \epsilon)d$ colours Charilaos Efthymiou December 19, 2013 presented by Vojtěch Kaluža ## Notation. - The formula $X \sim \Lambda$ means that X is a random variable with a probability distribution Λ . - Let U(M) stand for the uniform distribution over a set M. - The set of all proper k-colourings of a graph G is denoted by $\Omega(G)$ or just Ω . **Definition:** Let ν_1, ν_2 be two probability distributions on the set Γ. Then their **total variation distance** is $\|\nu_1 - \nu_2\| := \sup_{A \subset \Gamma} |\nu_1(A) - \nu_2(A)|$. **Definition:** Let μ, ν be two distributions on a finite set Ω . Then a distribution ω on the set $\Omega \times \Omega$ is called a **coupling** of μ and ν if the following holds: $$(\forall x \in \Omega) \qquad \quad \mu(x) = \sum_{y \in \Omega} \omega(x,y) \qquad \& \qquad \nu(x) = \sum_{y \in \Omega} \omega(y,x)$$ **Theorem (Coupling lemma):** Let μ, ν be two distributions on a finite set Ω and ω their coupling: - 1. Let $(X,Y) \sim \omega \Rightarrow \|\mu \nu\| \leq Pr[X \neq Y]$. - 2. There always exists a coupling ω such that $\|\mu \nu\| = Pr[X \neq Y]$ for $(X,Y) \sim \omega$. **Definition:** For $\sigma \in \Omega$ and some colour $q \in [k] \setminus \{\sigma_v\}$ we define the **disagreement graph** $Q_{\sigma_v,q} := (V', E')$ as the maximal induced subgraph of G such that $$V' := \{x \in V | \exists v - x \text{ path in } G \text{ consisting only of vertices with colours } \sigma_v, q\}$$ We define the q-switching of the colouring σ as a function $H(\sigma,q): \Omega \times [k] \to \Omega$ that returns the colouring obtained from σ by switching the colours σ_v and q on the vertices in V'. **Theorem 1:** Let $G \sim G_{n,d/n}$, $\mu = U(\Omega(G))$ and μ' be the distribution of the colourings that is returned by the algorithm. For fixed $k \geq (2 + \epsilon)d$, $\epsilon > 0$ and $d > d_0(\epsilon)$ with probability at least $1 - n^{-\frac{\epsilon}{90 \log d}}$ it holds that $$\|\mu - \mu'\| \in O(n^{-\frac{\epsilon}{90\log d}})$$ **Theorem 2:** The time complexity of the algorithm is $O(n^2)$ with probability at lest $1 - n^{-2/3}$. **Definition:** Let G be a graph with two fixed vertices v and u, let $\sigma \in \Omega$ be a colouring of G. We call σ good if $\sigma_v \neq \sigma_u$, otherwise we call it **bad**. For $c, q \in [k]$ we define $\Omega(c, q) := \{ \sigma \in \Omega | \sigma_v = c \& \sigma_u = q \}$ and $\Omega_c := \{ \sigma \in \Omega | \sigma_v = c \}$. For $c \neq q$ we also define $S(c, c) := \{ \sigma \in \Omega(c, c) | u \notin V(Q_{c,q}) \}$ and $S(q, c) := \{ \sigma \in \Omega(q, c) | u \notin V(Q_{q,c}) \}$. **Definition:** Let $\Omega_1, \Omega_2 \subseteq \Omega$ and $\alpha \in [0, 1]$. We say that Ω_1 is α -isomorphic to Ω_2 if there are sets $\Omega'_i \subseteq \Omega_i$ such that $|\Omega'_i| \geq (1 - \alpha) |\Omega_i|$, for i = 1, 2, and $|\Omega'_1| = |\Omega'_2|$. We call (Ω'_1, Ω'_2) the isomorphic pair of Ω_1 and Ω_2 . Let $h: \Omega'_1 \to \Omega'_2$ be a bijection. Then any function $H: \Omega_1 \to [k]^V$ is called α -function if $H|_{\Omega'_1} = h$. **Lemma 1:** Assume that the sets Ω_1 and Ω_2 are α -isomorphic and $H: \Omega_1 \to [k]^V$ is the α -function. Let $z \sim U(\Omega_1)$, z' = H(z) and let ν' be the distribution of z'. Then we have $||U(\Omega_1) - \nu'|| \le \alpha$. **Lemma 2:** For any $c, q \in [k]$ with $c \neq q$ the sets S(c, c) and S(q, c) have the same cardinality and the q-switching function $H(\cdot, q) \colon S(c, c) \to S(q, c)$ is a bijection. **Theorem 5:** Let $G_0, \ldots, G_r = G$ be the sequence of graphs produced by the algorithm on the input G and k. Assume that for every $i = 0, \ldots, r-1$ we have $\alpha_i \in [0,1]$ such that for any $c, q \in [k]$, $c \neq q$, the set $\Omega_i(c,c)$ is α_i -isomorphic to the set $\Omega_i(q,c)$ with α_i -function $H(\cdot,q)$. Let μ' be the distribution of the colourings that is returned by the algorithm. Then we have $||U(\Omega(G)) - \mu'|| \leq \sum_{i=0}^{r-1} \alpha_i$. Corollary 3: Let G_i be some fixed graph. For every $c, q \in [k]$ with $c \neq q$, the set $\Omega_i(c, c)$ is α isomorphic to $\Omega_i(q, c)$ with α -function $H(\cdot, q)$ if and only if the following holds. Choose u.a.r a colouring $\sigma \in \Omega_i(c, c)$. Then $\alpha \geq \max_{q \in [k] \setminus \{c\}} \Pr[u_i \in Q_{\sigma_{v_i}, q} | G_i]$ and the analogous condition holds for a random colouring of $\Omega_i(q, c)$. **Lemma 5:** With probability at least $1 - n^{-2/3}$ we can have the sequence G_0, \ldots, G_r of subgraphs of $G_{n,d/n}$ satisfying the following three properties: - 1. G_0 consists only of isolated vertices and simple cycles, i.e. with no common edge, each of the maximum length less than $\frac{\log n}{9\log d}$. - 2. In G_i the graph distance $\operatorname{dist}_{G_i}(v_i, u_i)$ is at least $\frac{\log n}{9 \log d}$. - 3. We have $\Pr[r \ge (1 + n^{-1/3})dn/2] \le \exp(-n^{1/4})$. **Theorem 7:** Take $k \geq (2 + \epsilon)d$ where $\epsilon > 0$ and $d \geq d_0(\epsilon)$ are fixed. For every $i = 0, \ldots, r - 1$ there is β_i such that for any $\alpha \geq \beta_i$ and any $c, q \in [k]$, $c \neq q$ the sets $\Omega_i(c, c)$ and $\Omega_i(q, c)$ are α -isomorphic and $H(\cdot, q)$ is the α -function, while $$E[\beta_i] \le \frac{(40 + 8\epsilon)k}{\epsilon} n^{-(1 + \frac{\epsilon}{45 \log d})}.$$ **Proposition 2:** Take $k \geq (2+\epsilon)d$ where $\epsilon > 0$ and $d \geq d_0(\epsilon)$ are fixed. Let σ be a k-colouring of G_i that is chosen u.a.r. from $(\Omega_i)_c$. For some $q \in [k] \setminus \{c\}$ we define the event $A_i := "u_i \in Q_{\sigma_{v_i},q}"$. Then we have $$\Pr[A_i] \le \frac{(10+2\epsilon)}{\epsilon} n^{-(1+\frac{\epsilon}{45\log d})} \qquad i = 0, \dots, r-1.$$