Ramsey Theory, Integer partitions and a New Proof of the Erdős-Szekeres Theorem

Guy Moshkovitz, Asaf Shapira

presented by Jaroslav Hančl

ESL, EST, Partitions

Let f(a, b) be the smallest integer so that every sequence of f(a, b) distinct real numbers contains either an increasing sequence of length a or a decreasing sequence of length b.

Proposition 1 (Erdős-Szekeres Lemma) $f(n,n) \le (n-1)^2 + 1$.

Let g(a, b) be the smallest integer so that every set of g(a, b) points in the plane in general position, all with distinct x-coordinates, contains either a points p_1, p_2, \ldots, p_a with increasing x-coordinate so that the slopes of the segments $(p_1, p_2), (p_2, p_3), \ldots, (p_{a-1}, p_a)$ are increasing, or b points such that the slopes of these segments are decreasing.

Proposition 2 (Erdős-Szekeres Theorem) $g(n,n) \leq {2n-4 \choose n-2} + 1$.

A decreasing sequence of nonnegative integers $a_1 \geq a_2 \geq \ldots$ will be called a line partition. A matrix A of nonnegative integers such that $A_{i,j} \geq A_{i+1,j}$ and $A_{i,j} \geq A_{i,j+1}$ is called a plane partition. Define a d-dimensional partition as a d-dimensional (hyper)matrix A of nonnegative integers so that the matrix is decreasing in each line, that is $A_{i_1,\ldots,i_t,\ldots,i_d} \geq A_{i_1,\ldots,i_t+1,\ldots,i_d}$ for every i_1,\ldots,i_d and $1 \leq t \leq d$.

Let $P_d(n)$ be the number of $n \times \cdots \times n$ d-dimensional partitions with entries from $[n]_0$. We have

- $P_1(n) = \binom{2n}{n}$ and $P_2(n) = \prod_{1 \le i,j,k \le n} \frac{i+j+k-1}{i+j+k-2}$
- $P_d(n) \leq 2^{2n^d}$ since a d-dimensional partition is composed of n^{d-1} line partitions.

Main results

Let K_N^k denote the complete k-uniform hypergraf on N ordered vertices. For a sequence of vertices $x_1 < x_2 < \cdots < x_{n+k-1}$ we say that the edges $\{x_1, \ldots, x_k\}, \{x_2, \ldots, x_{k+1}\}, \ldots, \{x_n, \ldots, x_{n+k-1}\}$ form a monotone path of length n.

Let $N_k(q, n)$ be the smallest integer N such that every coloring of the edges of K_N^k with q colors contains a monochromatic monotone path of length n.

- $f(n+1, n+1) \le N_2(2, n) \le n^2 + 1$
- $g(n+2, n+2) \le N_3(2, n) \le {2n \choose n} + 1$

Theorem 1 For every $q \ge 2$ and $n \ge 2$ we have

$$N_3(q,n) = P_{q-1}(n) + 1.$$

Theorem 2 For every $d \ge 1$ and $n \ge 1$ we have

$$P_d(n) \ge 2^{2n^d/3\sqrt{d+1}}.$$

Corollary 1 For every $q \ge 2$ and $n \ge 2$ we have

$$2^{2n^{q-1}/3\sqrt{q}} \le N_3(q,n) \le 2^{2n^{q-1}}.$$

Let $t_k(x)$ be a tower of exponents of height k-1 with x at the top. So $t_3(x)=2^{2^x}$.

Theorem 3 For every $k \geq 3, q \geq 2$ and $n \geq 2$ we have

$$N_k(q, n) \le t_{k-2}(N_3(q, n)).$$

Theorem 4 There is an absolute constant n_0 so that for every $k \geq 3, q \geq 2$ and $n \geq n_0$ we have

$$N_k(q,n) \ge t_{k-2}(N_3(q,n)/3n^q).$$

Corollary 2 For every $k \geq 3$ we have

$$N_k(2,n) = t_{k-1}((2-o(1))n),$$

where the o(n) term goes to 0 as $n \to \infty$.

Corollary 3 For every $k \geq 3, q \geq 2$ and sufficiently large n we have

$$t_{k-1}(n^{q-1}/2\sqrt{q}) \le N_k(q,n) \le t_{k-1}(2n^{q-1}).$$