PSD Matrix Completion and Universal Rigidity

M. Laurent, A. Varvitsiotis

The main question.

Given a partial matrix (i.e., a matrix with some entries unspecified), decide whether there exist a completion s.t. the resulting matrix is positive semidefinite.

PSD matrices.

the following conditions are equivalent for positive semidefiniteness of a symmetric matrix X (denoted by $0 \leq X$):

- $\forall x \in \mathbb{R}^n : x^T X x \ge 0$,
- $X = p^T p$ for some $p \in \mathbb{R}^n$,
- all eigenvalues of X are non-negative.

Semidefinite programming.

Let S^n denote the set of all symmetric $n \times n$ real matrices, and \langle , \rangle scalar product on S^n defined by $\langle A, B \rangle = \operatorname{tr}(AB) = \sum_{i,j} A_{ij} B_{ij}$. By (primal) feasible region we denote any set of the form

$$\mathcal{P} = \{ X \in \mathcal{S}^n \colon X \succeq 0, \ \langle A_i, X \rangle = b_i \}.$$

Together with a function $\langle C, X \rangle$ which is to be maximized, we speak of semidefinite program. Its dual is $\{\sum y_i A_i + Z = C, Z \succeq 0\}$ with objective function $\inf\{\sum b_i y_i\}$.

Tensegrity frameworks.

Tensegrity framework is a graph G with edges E partitioned into bars B, cables C and struts S; and an assignments of vectors $P = \{p_1, p_2, \dots, p_n\}$ to the vertices V. Such framework is called universally completable, if the matrix P^TP is a unique solution to the program

$$\{X \succeq 0, \langle E_{ij}, X \rangle = p_i^T p_j \text{ for } (i, j) \in V \cup B, \\ \langle E_{ij}, X \rangle \geq p_i^T p_j \text{ for } (i, j) \in S, \\ \langle E_{ij}, X \rangle \leq p_i^T p_j \text{ for } (i, j) \in C\}.$$

Sufficient condition for universal completability.

Let G, P be a tensegrity framework such that P spans \mathbb{R}^d . Assume there exists a matrix $Z \in \mathcal{S}^n$ satisfying

- 1. $Z \succeq 0$,
- 2. $Z_{ij} = 0$ for all $(i, j) \notin E \cup V$,
- 3. $Z_{ij} \geq 0$ for all cables and $Z_{ij} \leq 0$ for all struts,
- 4. Z has corank d,
- 5. $\sum_{j \in V} Z_{ij} p_j = 0$ for all $i \in 1..n$,
- 6. for any matrix $R \in \mathcal{S}^n$ the following holds:

$$p_i^T R p_j = 0 \ \forall (i,j) \in V \cup B \cup \{(i,j) \in C \cup S \colon Z_{ij} \neq 0\} \Rightarrow R = 0.$$

Then G, P is universally completable.