Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees

by Adam Marcus, Daniel A. Spielman and Nikhil Srivastava

- graph G, adjacency matrix A, if G is d-regular, d is always its eigenvalue, -d is eigenvalue $\iff G$ is bipartite (trivial eigenvalues)
- Ramanujan graph all non-trivial eigenvalues are in absolute value $\leq 2\sqrt{d-1}$

GOAL

- to construct an infinite family of d-regular Ramanujan graphs for all d
- this will be constructed as an infinite sequence of 2-lifts of Ramanujan graphs

COVERS

• 2-lift of G = (V, E): $\bar{G} = (\bar{V}, \bar{E}) \; \bar{V} = \{u_1, u_2 \forall u \in V\}$ and

$$\forall (u,v) \in E \begin{cases} (u_1, v_1), (u_2, v_2) \in \bar{E} \\ (u_1, v_2), (u_2, v_1) \in \bar{E} \end{cases}$$

- corresponding signing s of the edges by ± 1 , corresponding signed adjacency matrix A_s
- \bullet eigenvalues of a two lift are the union of eigenvalues of G and the eigenvalues of A_s
- universal cover of a graph G is an infinite tree such that every connected lift of G is a quotient of the tree
- path-tree of a graph $G, u \ (u \in V(G))$ contains one vertex for every non-backtracking path in G that starts in u
- \bullet every path-tree of G is an induced subgraph of the universal cover of G
- eigenvalues of a d-regular universal cover are $|\lambda| \leq 2\sqrt{d-1}$ ((c, d)-biregular, then $|\lambda| \leq \sqrt{d-1} + \sqrt{c-1}$)

ROOTS OF THE EXPECTED VALUE OF THE CHAR. POLY. OF A_s ARE $\leq 2\sqrt{d-1}$

• matching polynomial of G is

$$\mu_G(x) = \sum_{i>0} x^{n-2i} (-1)^i m_i$$

where $m_0 = 1$ and m_i is the number of matchings in G with i edges for i > 0

• spectral radius of graph G is $\rho(G) = \max\{\|Ax\|_2, \|x\|_2 = 1\}$, where λ_i are the eigenvalues of its adjacency matrix A $(\rho(G) = \sup\{\|Ax\|_2, \|x\|_2 = 1\})$ for A infinite-dimensional)

Theorem. 3.1. For every graph G, μ_G has only real roots.

Theorem. 3.2. For every graph G of maximum degree d, all roots of μ_G have absolute value at most $2\sqrt{d-1}$.

Theorem. 3.4. Let T(G, u) be a path-tree, then μ_G divides the characteristic polynomial of the adjacency matrix of T(G, u), i.e. all roots of μ_G are real with absolute value at most $\rho(T(G, u))$.

Theorem. 3.5. Let G be a graph and T its universal cover. Then the roots of the matching polynomial of G are bounded in absolute value by the spectral radius of T.

Theorem. 3.6. $\mathbb{E}_{s \in \{\pm 1\}^m}[f_s(x)] = \mu_G(x)$.

INTERLACING POLYNOMIALS - USEFUL ROOT BOUNDARIES

• $g(x) = \prod_{i=1}^{n-1} (x - \alpha_i), f(x) = \prod_{i=1}^n (x - \beta_i), g \text{ interlaces } f \text{ if: } \beta_a \leq \alpha_1 \leq \beta_2 \leq \ldots \leq \alpha_{n-1} \leq \beta_n$

Theorem. 4.2. Let $f_1, \ldots f_k$ be real-rooted polynomials of the same degree, with positive leading coefficient, $f_{\emptyset} = \sum_{i=1}^{k} f_i$. If $f_1, f_2, \ldots f_k$ have a common interlacing, then there exists an i such that the largest root of f_i is at most the largest root of f_{\emptyset} .

• $S_1, \ldots S_m$ finite sets and for every $s_1 \in S_1, \ldots s_m \in S_m$ let $f_{s_1, \ldots s_m}$ be a real-rooted degree n polynomial with positive leading coefficients.

For every partial assignment $s_1 \in S_1, \dots s_k \in S_k$ define

$$f_{s_1,\dots s_k} = \sum_{s_{k+1} \in S_{k+1},\dots s_m \in S_m} f_{s_1,\dots s_k,s_{k+1}\dots s_m}$$

$$f_{\emptyset} = \sum_{s_1 \in S_1,\dots s_m \in S_m} f_{s_1,\dots s_m}.$$

• if for all k = 0, 1, ..., m-1 and all $s_1 \in S_1 ..., s_k \in S_k$ the polynomials $\{f_{s_1,...,s_k,t}\}_{t \in S_{k+1}}$ have a common interlacing, then $\{f_{s_1,...,s_m}\}_{s_1,...,s_m}$ form an interlacing family.

Theorem. 4.4. Let $S_1, \ldots S_m$ be finite sets, and let $\{f_{s_1,\ldots s_m}\}$ be an interlacing family of polynomials. Then there exists some $s_1,\ldots s_m\in S_1\times\ldots\times S_m$ so that the largest root of $\{f_{s_1,\ldots s_m}\}$ is less than the largest root of f_\emptyset .

Theorem. 4.5. Let f and g be (univariate) polynomials of degree n such that for all $\alpha, \beta > 0$, $\alpha f + \beta g$ has n real roots. Then f and g have a common interlacing.

SIGNED CHAR. POLY. ARE \mathbb{R} -ROOTED AND FORM INTERLACING FAMILY

Theorem. 5.1. Let $p_1, \ldots p_m$ be be numbers in [0,1]. Then the following polynomial is real-rooted:

$$\sum_{s \in \{\pm 1\}^m} (\prod_{i:s_i=1} p_i) (\prod_{i:s_i=-1}) f_s(x).$$

Theorem. 5.2. The polynomials $\{f_s\}_{s\in\{\pm 1\}^m}$ are an interlacing family.

WE ARE ALMOST DONE:)

Theorem. 5.3. Let G be a graph with adjacency matrix A and universal cover T. Then there is a signing s of A such that all of the eigenvalues of A_s are at most $\rho(T)$, i.e. for d-regular graphs, the eigenvalues of A_s are at most $2\sqrt{d-1}$

Theorem. 5.4. For every $d \ge 3$ there is an infinite sequence of d-regular bipartite Ramanujan graphs.

Theorem. 5.5. For every $c, d \ge 3$ there is an infinite sequence of (c, d)-biregular bipartite Ramanujan graphs, with nontrivial eigenvalues bounded by $\sqrt{c-1} + \sqrt{d-1}$.

SOME MORE DEFINITIONS & PROOF OF THM 5.1.

• multivariate polynomial $f \in \mathbb{R}[z_1, \dots z_n]$ is real stable if $f(z_1, \dots z_n) \neq 0$ whenever the imaginary part of every z_i is strictly positive.

Theorem. 6.2. Let $f(z_1, \ldots z_n) + \omega g(z_1, \ldots z_n) \in \mathbb{R}[z_1, \ldots z_n, \omega]$ be a real stable of degree at most 1 in z_j . Then the following polynomial will also be real stable:

$$f(z_1, \ldots z_n) - \frac{\partial g}{\partial z_i}(z_1, \ldots z_n).$$

Theorem. 6.3. For any real stable polynomials $f(z_1, \ldots z_n)$ and $t(\omega_1, \ldots \omega_m)$ with $m \le n$ which both have degree at most 1 in the variables z_i, ω_i for $a \le j \le m$, the polynomial below will also be real stable:

$$t(-\frac{\partial g}{\partial z_1},\ldots,-\frac{\partial g}{\partial z_m})f(z_1,\ldots z_n).$$

Theorem. 6.4. Let $A_1, \ldots A_m$ be positive semidefinite matrices. Then $det[z_1A_1 + \ldots + z_mA_m]$ is a real stable polynomial.

Theorem. 6.5. Let $a_1, \ldots a_m$ and $b_1, \ldots b_m$ be vectors in \mathbb{R}^n and let $p_1, \ldots p_m$ be real numbers in [0, 1]. Then every (univariate) polynomial of the form below is real stable:

$$P(x) = \sum_{S \subseteq [m]} (\prod_{i \in S} p_i) (\prod_{i \notin S} (1 - p_i)) det[xI + \sum_{i \in S} a_i a_i^T + \sum_{i \notin S} b_i b_i^T].$$