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The authors introduce a new randomized algorithm which finds a coloring which achieves discrepancy
C'\/n. The algorithm and its analysis use only basic linear algebra and is ”truly” constructive in that it does
not appeal to the existential arguments, giving a new proof of the partial coloring lemma.

Definitions:

We are given a collection of m sets S from a universe V' = {1,...,n}. Let no element from V be in
more than ¢ sets of S.

The goal is to find a coloring x: V' — {—1,1} that minimizes the maximum discrepancy x(S) =
maxges | ;g X(i)|- The minimum discrepancy of S is denoted as disc(S) = min,, x(S).

Known:

The

A random coloring has discrepancy O(y/nlogm).
For ¢ bounded disc(S) < 2t holds [Beck and Fiala, 1981] and disc(S) = O(v/%) is conjectured.

For ¢ bounded disc(S) = O(v/t - log n) holds [Banaszczsyk, 1998], non-constructively.

Theorem 1 (Standard deviation result, Spencer 1985). For any set system (V,S) with |V| = n,
|S| = m, there exists a coloring x: V — {—1,1} such that x(S) < Ky/n-logy(m/n), where K is a
universal constant (K can be siz if m =n).

Spencer‘s original proof was non-constructive. A longstanding problem: is there an efficient way to find
a good coloring as in Theorem [I}?

Bansal gave the first randomized polynomial time algorithm to find coloring with discrepancy O(y/n -
log(m/n)) [Bansal, 2010].

results:

A new algorithm which gives a new constructive proof of Spencer‘s original result.

Theorem 2. For any set system (V, S) with |V| = n, |S| = m, there exists a randomized algorithm in
running time O((n +m)?3) that with probability at least 1/2 computes a coloring x: V — {—1,1} such

that x(S) < Ky/n -logy(m/n), where K is a universal constant.

A similar constructive result for minimizing discrepancy in the ”Beck-Fiala setting” where each variable
is constrained to occur in a bounded number of sets.

Theorem 3. Let (V,S) be a set-system with |V| =n, |S| = m and each element of V' contained in at
most t sets from S. Then, there exists a randomized algorithm in running time O((n +m)®) that with
probability at least 1/2 computes a coloring x: V — {—1,1} such that x(S) < K+/t-logn, where K is
a universal constant.

Outline of the Edge-Walk Algorithm:

A partial coloring x: V' — [—1,1] such that for all S € S, [x(S)| = O(y/nlog(m/n)) and |{i : |x(i)| =
1}| > en for a fixed constant ¢ > 0.

Theorem 4 (Main Partial Coloring Lemma). Let vy,...,v, € R™ be vectors, and xg € [—1,1]™ be
a 7starting point”. Let c1,...,cn > 0 be tresholds such that Z;nzl exp (—c?/16) < n/16. Let § > 0
be a small approximation parameter. then there exists an efficient randomized algorithm which with
probability at least 0.1 finds a point x € [—1,1]™ such that |(x — o, v;)| < ¢jllvjll2 and |z;| > 1 -4 for
at least n/2 indices i € [n]. Moreover, the algorithm runs in time O((m +n)®- 672 - log(nm/9)).

Theorem [4] implies Theorem [2] and Theorem

A polytope P = {z € R" : |z;| < 1Vi € [n],[(x —x0,v;)| < ¢; Vj € [m]} defined by variable constraints
|z;] <1 and discrepancy constraints |(x — xo,v;)| < ¢;.



Preliminaries for the proof of Theorem

o Let N(p1,0?) denote the Gaussian distribution with mean p and variance o2. For = 0 and % = 1 we
call it standard.

e For a linear subspace V' C R™ we denote by G ~ N(V) the standard multi-dimensional Gaussian

distribution supported on V: G = Gyvy + - -+ + Gqvqg where {v1,...,v4} is an orthonormal basis for V'
and Gy,...,Gq ~ N(0,1).

Claim 7. Let V C R"™ be a linear subspace and let G ~ N (V). Then, for allu € R", (G, u) ~ N(0,0?%),
where 0% < ||ul|3.

Claim 8. Let V C R" be a linear subspace and let G ~ N (V). Let (G, e;) ~ N(0,02). Then > ;" 02 =
dim(V).

Claim 9. Let G ~ N(0,1). Then, for any A > 0, Pr[|G| > \] < 2exp (—A?/2).

Lemma 10 (Bansal, 2010). Let Xi,..., X1 be random variables. Let Y1, ..., Y be random variables
where each Y; is a function of X;. Suppose that for all1 < t < T, x1,...,2,-1 € R, Y; | (X1 =
X1y..-,Xi—1 = xi—1) is Gaussian with mean zero and variance at most one (possibly different for each
setting of x1,...,2i_1). Then for any X > 0, Pr[|Yy +--- 4+ Yr| > \WT] < 2exp (—A2/2).

Proof of Theorem [4k
e Inecachstept, 1 <t<T, set
" ={ieln]: (Xi—1)s =21 -0},
Cioe = {j € [m] : [(Xe1 — mo,v5)| = ¢; — 6},
V= {ueR":u; =0Vi € CP, (u,v;) = 0Vj € Ci=c}.
e A crucial lemma:

Lemma 11. Assume that Z:’;l exp (—¢5/16) < n/16. Then in our random walk with probability at
least 0.1 we have Xg,..., X7 € P and |(X1):;| > 1— 9 for at least n/2 indices i € [n].

o Auxiliary results:

Claim 12. For all t < T we have C/*" C C and Cfisc C Clisc. In particular, for 1 < t < T,
dlm(vt) Z dim(VtH).

Claim 13. For v < §/4/Clog(mn/v) and C sufficiently large constant, with probability at least 1 —
1/(mn)¢~2, Xo,...,Xr € P.

Claim 14. E[|C¥*¢|] < n/4.
Claim 15. E[||X7|3] < n.
Claim 16. E[|C2*"|] > 0.56n.



