# Constructive Discrepancy Minimization by Walking on The Edges

by Shachar Lovett and Raghu Meka

## presented by Martin Balko

The authors introduce a new randomized algorithm which finds a coloring which achieves discrepancy  $C\sqrt{n}$ . The algorithm and its analysis use only basic linear algebra and is "truly" constructive in that it does not appeal to the existential arguments, giving a new proof of the partial coloring lemma.

#### **Definitions:**

- We are given a collection of m sets S from a universe  $V = \{1, ..., n\}$ . Let no element from V be in more than t sets of S.
- The goal is to find a coloring  $\chi: V \to \{-1,1\}$  that minimizes the maximum discrepancy  $\chi(\mathcal{S}) = \max_{S \in \mathcal{S}} |\sum_{i \in S} \chi(i)|$ . The minimum discrepancy of  $\mathcal{S}$  is denoted as  $\operatorname{disc}(\mathcal{S}) = \min_{\chi} \chi(\mathcal{S})$ .

#### Known:

- A random coloring has discrepancy  $O(\sqrt{n \log m})$ .
- For t bounded  $\operatorname{disc}(\mathcal{S}) < 2t$  holds [Beck and Fiala, 1981] and  $\operatorname{disc}(\mathcal{S}) = O(\sqrt{t})$  is conjectured.
- For t bounded  $\operatorname{disc}(S) = O(\sqrt{t \cdot \log n})$  holds [Banaszczsyk, 1998], non-constructively.
  - **Theorem 1** (Standard deviation result, Spencer 1985). For any set system (V, S) with |V| = n, |S| = m, there exists a coloring  $\chi \colon V \to \{-1, 1\}$  such that  $\chi(S) < K\sqrt{n \cdot \log_2(m/n)}$ , where K is a universal constant (K can be six if m = n).
- Spencer's original proof was non-constructive. A longstanding problem: is there an efficient way to find a good coloring as in Theorem 1?
- Bansal gave the first randomized polynomial time algorithm to find coloring with discrepancy  $O(\sqrt{n} \cdot \log(m/n))$  [Bansal, 2010].

### The results:

- A new algorithm which gives a new constructive proof of Spencer's original result.
  - **Theorem 2.** For any set system (V,S) with |V| = n, |S| = m, there exists a randomized algorithm in running time  $\tilde{O}((n+m)^3)$  that with probability at least 1/2 computes a coloring  $\chi \colon V \to \{-1,1\}$  such that  $\chi(S) < K\sqrt{n \cdot \log_2(m/n)}$ , where K is a universal constant.
- A similar constructive result for minimizing discrepancy in the "Beck-Fiala setting" where each variable is constrained to occur in a bounded number of sets.
  - **Theorem 3.** Let (V, S) be a set-system with |V| = n, |S| = m and each element of V contained in at most t sets from S. Then, there exists a randomized algorithm in running time  $\tilde{O}((n+m)^5)$  that with probability at least 1/2 computes a coloring  $\chi \colon V \to \{-1,1\}$  such that  $\chi(S) < K\sqrt{t} \cdot \log n$ , where K is a universal constant.

## Outline of the Edge-Walk Algorithm:

- A partial coloring  $\chi \colon V \to [-1,1]$  such that for all  $S \in \mathcal{S}$ ,  $|\chi(S)| = O(\sqrt{n \log(m/n)})$  and  $|\{i : |\chi(i)| = 1\}| \ge cn$  for a fixed constant c > 0.
  - **Theorem 4** (Main Partial Coloring Lemma). Let  $v_1, \ldots, v_m \in \mathbb{R}^n$  be vectors, and  $x_0 \in [-1, 1]^n$  be a "starting point". Let  $c_1, \ldots, c_m \geq 0$  be tresholds such that  $\sum_{j=1}^m \exp\left(-c_j^2/16\right) \leq n/16$ . Let  $\delta > 0$  be a small approximation parameter, then there exists an efficient randomized algorithm which with probability at least 0.1 finds a point  $x \in [-1, 1]^n$  such that  $|\langle x x_0, v_j \rangle| \leq c_j ||v_j||_2$  and  $|x_i| \geq 1 \delta$  for at least n/2 indices  $i \in [n]$ . Moreover, the algorithm runs in time  $O((m+n)^3 \cdot \delta^{-2} \cdot \log(nm/\delta))$ .
- Theorem 4 implies Theorem 2 and Theorem 3.
- A polytope  $\mathcal{P} = \{x \in \mathbb{R}^n : |x_i| \le 1 \ \forall i \in [n], |\langle x x_0, v_j \rangle| \le c_j \ \forall j \in [m] \}$  defined by variable constraints  $|x_i| \le 1$  and discrepancy constraints  $|\langle x x_0, v_j \rangle| \le c_j$ .

#### Preliminaries for the proof of Theorem 4:

- Let  $\mathcal{N}(\mu, \sigma^2)$  denote the Gaussian distribution with mean  $\mu$  and variance  $\sigma^2$ . For  $\mu = 0$  and  $\sigma^2 = 1$  we call it standard.
- For a linear subspace  $V \subseteq \mathbb{R}^n$  we denote by  $G \sim \mathcal{N}(V)$  the standard multi-dimensional Gaussian distribution supported on  $V: G = G_1v_1 + \cdots + G_dv_d$  where  $\{v_1, \ldots, v_d\}$  is an orthonormal basis for V and  $G_1, \ldots, G_d \sim \mathcal{N}(0, 1)$ .

Claim 7. Let  $V \subseteq \mathbb{R}^n$  be a linear subspace and let  $G \sim \mathcal{N}(V)$ . Then, for all  $u \in \mathbb{R}^n$ ,  $\langle G, u \rangle \sim \mathcal{N}(0, \sigma^2)$ , where  $\sigma^2 \leq ||u||_2^2$ .

Claim 8. Let  $V \subseteq \mathbb{R}^n$  be a linear subspace and let  $G \sim \mathcal{N}(V)$ . Let  $\langle G, e_i \rangle \sim \mathcal{N}(0, \sigma_i^2)$ . Then  $\sum_{i=1}^n \sigma_i^2 = \dim(V)$ .

Claim 9. Let  $G \sim \mathcal{N}(0,1)$ . Then, for any  $\lambda > 0$ ,  $\Pr[|G| \ge \lambda] \le 2 \exp(-\lambda^2/2)$ .

**Lemma 10** (Bansal, 2010). Let  $X_1, \ldots, X_T$  be random variables. Let  $Y_1, \ldots, Y_T$  be random variables where each  $Y_i$  is a function of  $X_i$ . Suppose that for all  $1 \le t \le T$ ,  $x_1, \ldots, x_{i-1} \in \mathbb{R}$ ,  $Y_i \mid (X_1 = x_1, \ldots, X_{i-1} = x_{i-1})$  is Gaussian with mean zero and variance at most one (possibly different for each setting of  $x_1, \ldots, x_{i-1}$ ). Then for any  $\lambda > 0$ ,  $\Pr[|Y_1 + \cdots + Y_T| \ge \lambda \sqrt{T}] \le 2 \exp(-\lambda^2/2)$ .

#### Proof of Theorem 4:

• In each step t,  $1 \le t \le T$ , set

$$C_t^{var} = \{i \in [n] : (X_{t-1})_i \ge 1 - \delta\},$$

$$C_t^{disc} = \{j \in [m] : |\langle X_{t-1} - x_0, v_j \rangle| \ge c_j - \delta\},$$

$$\mathcal{V}_t = \{u \in \mathbb{R}^n : u_i = 0 \ \forall i \in C_t^{var}, \langle u, v_j \rangle = 0 \ \forall j \in C_t^{disc}\}.$$

• A crucial lemma:

**Lemma 11.** Assume that  $\sum_{j=1}^{m} \exp\left(-c_j^2/16\right) \le n/16$ . Then in our random walk with probability at least 0.1 we have  $X_0, \ldots, X_T \in \mathcal{P}$  and  $|(X_T)_i| \ge 1 - \delta$  for at least n/2 indices  $i \in [n]$ .

• Auxiliary results:

Claim 12. For all t < T we have  $C_t^{var} \subseteq C_{t+1}^{var}$  and  $C_t^{disc} \subseteq C_{t+1}^{disc}$ . In particular, for  $1 \le t \le T$ ,  $\dim(\mathcal{V}_t) \ge \dim(\mathcal{V}_{t+1})$ .

Claim 13. For  $\gamma \leq \delta/\sqrt{C\log(mn/\gamma)}$  and C sufficiently large constant, with probability at least  $1 - 1/(mn)^{C-2}$ ,  $X_0, \ldots, X_T \in \mathcal{P}$ .

Claim 14.  $\mathbb{E}[|\mathcal{C}_T^{disc}|] < n/4$ .

Claim 15.  $\mathbb{E}[\|X_T\|_2^2] \leq n$ .

Claim 16.  $\mathbb{E}[|C_T^{var}|] \ge 0.56n$ .