
A Rendezvous of Logic, Complexity, and Algebra

Hubie Chen
presented by Martin Kupec

Definition 1. A constraint over a constraint language Γ is an expression of the form R(v1, . . . , vk) where
R is a relation of arity k contained in Γ, and the vi are variables. A constraint is satisfied by a mapping f
defined on the vi if (f(v1), . . . , f(vk)) ∈ R.

Example 2. We demonstrate that 3-SAT can be viewed as a problem of the form CSP(Γ) for a boolean
constraint language Γ. Define the relations R0,3, R1,3, R2,3, and R3,3 by

R0,3 = {0, 1}3 \ {(0, 0, 0)} ≡ (x ∨ y ∨ z)
R1,3 = {0, 1}3 \ {(1, 0, 0)} ≡ (¬x ∨ y ∨ z)
R2,3 = {0, 1}3 \ {(1, 1, 0)} ≡ (¬x ∨ ¬y ∨ z)
R3,3 = {0, 1}3 \ {(1, 1, 1)} ≡ (¬x ∨ ¬y ∨ ¬z)

Definition 3. We say that a relation R ⊆ Dk is pp-definable (short for primitive positive definable) from
a constraint language Γ if for some m ≥ 0 there exists a finite conjunction C consisting of constraints and
equalities (u = v) over variables {v1, . . . , vk, x1, . . . , xm} such that

R(v1, . . . , vk) ≡ ∃x1 . . . ∃xmC.

That is, R contains exactly those tuples of the form (g(v1), . . . , g(vk)) where g is an assignment that can be
extended to a satisfying assignment of C. We use 〈Γ〉 to denote the set of all relations that are pp-definable
from Γ.

Example 4. Let S = {(0, 1), (1, 0)} be the disequality relation. The following is a pp-definition of S from
the constraint language Γ3 (3-SAT).

S(y, z) = ∃x(R0,3(x, y, z) ∧R1,3(x, y, z) ∧R2,3(z, y, x) ∧R3,3(z, y, x)).

Proposition 5. Let Γ and Γ′ be finite constraint languages. If Γ′ ⊆ 〈Γ〉, then CSP(Γ′) reduces to CSP(Γ).

Definition 6. An operation f : Dm → D is a polymorphism of a relation R ⊆ Dk if for any choice of
m tuples (t11, . . . , t1k), . . . , (tm1, . . . , tmk) from R, it holds that the tuple obtained from these m tuples by
applying f coordinate-wise, (f(t11, . . . , tm1), . . . , f(t1k, . . . , tmk)), is in R.

Definition 7. The set of polymorphisms of Γ is defined as follows.

Pol(Γ) = {f : ∀R ∈ Γ, f is a polymorphism of R}.

Definition 8. The set of relations having all operations in O as a polymorphism is denoted by Inv(O).

Inv(O) = {R : ∀f ∈ O, f is a polymorphism of R}.

Theorem 9. Let Γ be a finite constraint language over a finite domain D. It holds that 〈Γ〉 = Inv(Pol(Γ)).

Theorem 10. Let Γ and Γ′ be finite constraint languages. If Pol(Γ) ⊆ Pol(Γ′), then Γ′ ⊆ 〈Γ〉 and CSP(Γ′)
reduces to CSP(Γ).

1



Definition 11. A clone is a set of operations that

• contains all projections, that is, the operations πm
i : Dm → D with 1 ≤ i ≤ m such that πm

i (d1, . . . , dm) =
di for all d1, . . . , dm ∈ D, and

• is closed under composition, where the composition of an arity n operation f : Dn → D and n arity
m operations f1, . . . , fn : Dm → D is defined to be the arity m operation g : Dm → D such that
g(d1, . . . , dm) = f(f1(d1, . . . , dm), . . . , fn(d1, . . . , dm)) for all d1, . . . , dm ∈ D.

Proposition 12. For all constraint languages Γ, the set of operations Pol(Γ) is a clone.

Theorem 13. (Schaefer’s theorem – algebraic formulation) Let Γ be a finite boolean constraint language. The
problem CSP(Γ) is polynomial-time tractable if Γ has one of the following six operations as a polymorphism:

• the constant operation 0,

• the constant operation 1,

• the boolean AND operation ∧,

• the boolean OR operation ∨,

• the operation majority,

• the operation minority.

Otherwise, the problem CSP(Γ) is NP-complete.

Algorithms used for tractability proof.

Arc consistency algorithm
Input: an instance of the CSP.

1 For each variable v, define Dv to be ∩Cπv(C) where the intersection is over all constraints C.
2 For each constraint R(v1, . . . , vk), replace R with R ∩ (Dv1 × · · · ×Dvk).

If R becomes empty, then terminate and report “unsatisfiable”.
3 If any relations were changed in step 2, goto step 1. Otherwise, halt.

Algorithm for majority polymorphism
Input: an instance φ of the CSP with variable set V .

1 For each non-empty subset W = {w1, . . . , wl} of V of size l ≤ 3,
add the constraint Dl(w1, . . . , wl) to φ.

2 For each constraint R(w1, . . . , wl) of φ with l ≤ 3, compute the set
R′ = {(f(w1), . . . , f(wl)) | f : {w1, . . . , wl} → D is a partial solution of the instance φ}.
Then, replace R with R′.
If R becomes empty, terminate and report “unsatisfiable”.

3 If any relations were changed in step 2, goto step 2 and repeat it. Otherwise, halt.

Theorem 14. A clone over {0, 1} either contains only essentially unary operations, or contains one of the
following four operations:

• the boolean AND operation ∧,

• the booelan OR operation ∨,

• the operation majority,

• the operation minority.

Lemma 15. If Γ is a finite boolean constraint language such that Pol(Γ) contains only essentially unary
operations that act as permutations, then for any finite boolean constraint language Γ′, it holds that CSP(Γ′)
reduces to CSP(Γ).

Proposition 16. Let Φ be an instance of Quantified Horn-SAT having prefix class Π2. The formula Φ is
true if and only if for every assignment f ∈ [≤ 1, false]Φ, there exists an extension f ′ : YΦ∪XΦ → {true, false}
of f satisfying all clauses of Φ.


