A Rendezvous of Logic, Complexity, and Algebra

Hubie Chen presented by Martin Kupec

Definition 1. A constraint over a constraint language Γ is an expression of the form $R(v_1, \ldots, v_k)$ where R is a relation of arity k contained in Γ , and the v_i are variables. A constraint is satisfied by a mapping f defined on the v_i if $(f(v_1), \ldots, f(v_k)) \in R$.

Example 2. We demonstrate that 3-SAT can be viewed as a problem of the form $\mathsf{CSP}(\Gamma)$ for a boolean constraint language Γ . Define the relations $R_{0,3}$, $R_{1,3}$, $R_{2,3}$, and $R_{3,3}$ by

$$\begin{array}{rclcrcl} R_{0,3} & = & \{0,1\}^3 \setminus \{(0,0,0)\} & \equiv & (x \vee y \vee z) \\ R_{1,3} & = & \{0,1\}^3 \setminus \{(1,0,0)\} & \equiv & (\neg x \vee y \vee z) \\ R_{2,3} & = & \{0,1\}^3 \setminus \{(1,1,0)\} & \equiv & (\neg x \vee \neg y \vee z) \\ R_{3,3} & = & \{0,1\}^3 \setminus \{(1,1,1)\} & \equiv & (\neg x \vee \neg y \vee \neg z) \end{array}$$

Definition 3. We say that a relation $R \subseteq D^k$ is pp-definable (short for primitive positive definable) from a constraint language Γ if for some $m \geq 0$ there exists a finite conjunction C consisting of constraints and equalities (u = v) over variables $\{v_1, \ldots, v_k, x_1, \ldots, x_m\}$ such that

$$R(v_1, \dots, v_k) \equiv \exists x_1 \dots \exists x_m \mathcal{C}.$$

That is, R contains exactly those tuples of the form $(g(v_1), \ldots, g(v_k))$ where g is an assignment that can be extended to a satisfying assignment of C. We use $\langle \Gamma \rangle$ to denote the set of all relations that are pp-definable from Γ .

Example 4. Let $S = \{(0,1), (1,0)\}$ be the disequality relation. The following is a pp-definition of S from the constraint language Γ_3 (3-SAT).

$$S(y,z) = \exists x (R_{0,3}(x,y,z) \land R_{1,3}(x,y,z) \land R_{2,3}(z,y,x) \land R_{3,3}(z,y,x)).$$

Proposition 5. Let Γ and Γ' be finite constraint languages. If $\Gamma' \subseteq \langle \Gamma \rangle$, then $\mathsf{CSP}(\Gamma')$ reduces to $\mathsf{CSP}(\Gamma)$.

Definition 6. An operation $f: D^m \to D$ is a polymorphism of a relation $R \subseteq D^k$ if for any choice of m tuples $(t_{11}, \ldots, t_{1k}), \ldots, (t_{m1}, \ldots, t_{mk})$ from R, it holds that the tuple obtained from these m tuples by applying f coordinate-wise, $(f(t_{11}, \ldots, t_{m1}), \ldots, f(t_{1k}, \ldots, t_{mk}))$, is in R.

Definition 7. The set of polymorphisms of Γ is defined as follows.

$$Pol(\Gamma) = \{ f : \forall R \in \Gamma, f \text{ is a polymorphism of } R \}.$$

Definition 8. The set of relations having all operations in O as a polymorphism is denoted by Inv(O).

$$\mathsf{Inv}(O) = \{R : \forall f \in O, f \text{ is a polymorphism of } R\}.$$

Theorem 9. Let Γ be a finite constraint language over a finite domain D. It holds that $\langle \Gamma \rangle = \mathsf{Inv}(\mathsf{Pol}(\Gamma))$.

Theorem 10. Let Γ and Γ' be finite constraint languages. If $Pol(\Gamma) \subseteq Pol(\Gamma')$, then $\Gamma' \subseteq \langle \Gamma \rangle$ and $CSP(\Gamma')$ reduces to $CSP(\Gamma)$.

Definition 11. A clone is a set of operations that

- contains all projections, that is, the operations $\pi_i^m: D^m \to D$ with $1 \le i \le m$ such that $\pi_i^m(d_1, \ldots, d_m) = d_i$ for all $d_1, \ldots, d_m \in D$, and
- is closed under composition, where the composition of an arity n operation $f: D^n \to D$ and n arity m operations $f_1, \ldots, f_n: D^m \to D$ is defined to be the arity m operation $g: D^m \to D$ such that $g(d_1, \ldots, d_m) = f(f_1(d_1, \ldots, d_m), \ldots, f_n(d_1, \ldots, d_m))$ for all $d_1, \ldots, d_m \in D$.

Proposition 12. For all constraint languages Γ , the set of operations $Pol(\Gamma)$ is a clone.

Theorem 13. (Schaefer's theorem – algebraic formulation) Let Γ be a finite boolean constraint language. The problem $\mathsf{CSP}(\Gamma)$ is polynomial-time tractable if Γ has one of the following six operations as a polymorphism:

- the constant operation 0,
- the constant operation 1,
- the boolean AND operation \wedge ,
- the boolean OR operation \vee ,
- the operation majority,
- the operation minority.

Otherwise, the problem $\mathsf{CSP}(\Gamma)$ is NP-complete.

Algorithms used for tractability proof.

ARC CONSISTENCY ALGORITHM

Input: an instance of the CSP.

- 1 For each variable v, define D_v to be $\cap_C \pi_v(C)$ where the intersection is over all constraints C.
- 2 For each constraint $R(v_1, \ldots, v_k)$, replace R with $R \cap (D_{v_1} \times \cdots \times D_{v_k})$. If R becomes empty, then terminate and report "unsatisfiable".
- 3 If any relations were changed in step 2, goto step 1. Otherwise, halt.

ALGORITHM FOR MAJORITY POLYMORPHISM

Input: an instance ϕ of the CSP with variable set V.

- 1 For each non-empty subset $W = \{w_1, \ldots, w_l\}$ of V of size $l \leq 3$, add the constraint $D^l(w_1, \ldots, w_l)$ to ϕ .
- 2 For each constraint $R(w_1, \ldots, w_l)$ of ϕ with $l \leq 3$, compute the set $R' = \{(f(w_1), \ldots, f(w_l)) \mid f : \{w_1, \ldots, w_l\} \to D \text{ is a partial solution of the instance } \phi\}$. Then, replace R with R'.
- If R becomes empty, terminate and report "unsatisfiable".
- 3 If any relations were changed in step 2, goto step 2 and repeat it. Otherwise, halt.

Theorem 14. A clone over $\{0,1\}$ either contains only essentially unary operations, or contains one of the following four operations:

- the boolean AND operation \wedge ,
- the booelan OR operation \vee ,
- the operation majority,
- the operation minority.

Lemma 15. If Γ is a finite boolean constraint language such that $Pol(\Gamma)$ contains only essentially unary operations that act as permutations, then for any finite boolean constraint language Γ' , it holds that $CSP(\Gamma')$ reduces to $CSP(\Gamma)$.

Proposition 16. Let Φ be an instance of QUANTIFIED HORN-SAT having prefix class Π_2 . The formula Φ is true if and only if for every assignment $f \in [\leq 1, \mathsf{false}]_{\Phi}$, there exists an extension $f' : Y_{\Phi} \cup X_{\Phi} \to \{\mathsf{true}, \mathsf{false}\}$ of f satisfying all clauses of Φ .