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1 Introduction

Fix a sequence of graphs G;, where ¢ € N. For the purpose of this talk, we
always assume that the minimum degrees of the graphs tend to infinity, and
the minimum degree of G; will be denoted by k;. Let (G;),, be a random sub-
graph obtained from the graph G; by taking each edge of G; independently with
probability p;. We say that the (G;),, satisfies some property P asymptotically
almost surely, if the probability that (G;),, satisfies P tends to one as i goes
to infinity. For the simplicity, when G and p are graphs parametrized by the
minimum degree, we abuse a notation and consider G and p as sequences ob-
tained by taking the minimum degree tending to infinity. We then say that G},
satisfies P a.a.s., if the underlying sequence does.
The main results of the paper shows that

e if p=c/k, then G, a.a.s. contains a path of length (1 —2/\/c) - k,
o if p=w(1)/k, then G, a.a.s. contains a cycle of length (1 —¢) - k, and
o if p=(1+¢)logk/k, then G, a.a.s. contains a path of length .

Note that if the graphs Gy are cliques on k 4+ 1 vertices, we obtain the
standard Erd&s-Rényi model, and the results generalize various classical results
about sparse random graphs. Specifically,

e the result of Ajtai, Komlés and Szemerédi about long paths in sparse
random graphs, which was independently proven also by Fernandez de la
Vega,

e the result of Bollobds, Fenner and Frieze about long cycles in sparse ran-
dom graphs, and

e the result about Hamiltonicity threshold due to Bollobés, and Komlés and
Szemerédi.

2 More formally

We present the following results about the case of paths.

Theorem 1.1. Let G be a finite graph with minimum degree at least k, and let
p = c/k for some positive ¢ satisfying ¢ = o(k) (c is not necessarily fized). Then
a.a.s. Gp contains a path of length (1 —2/\/c)k.

Theorem 1.2. Let € be a fixed positive real. For a finite graph G of minimum
degree at least k and a real p > (1 + €)logk/k, Gp a.a.s. contains a path of
length k.



The key tools for proving Theorem 1.2 are the following two theorems:

Theorem 3.1. Let p = ¢/k for some ¢ = o(k), and let G be a graph of minimum
degree at least k.

(i) Gp a.a.s. contains a path of length (1 —2/4/c)k,
(i1) if G is bipartite, then G, a.a.s. contains a path of length (2—6/\/c)k, and
(i1i) if ¢ tends to infinity with k, then for a fized vertex v, there a.a.s. exists a
path of length (1 —2/\/c)k in G, which starts at vertex v.

Theorem 3.2. There exists a positive real £g such that following holds for every
fized positive real € < €y. Let G be a graph on n vertices of minimum degree
at least (1 — )k, and assume that n < (14 ¢)k. Forp > %, a random
subgraph G\, is Hamiltonian a.a.s.



