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Basic definitions

Partition identity is given by formula
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or, equivalently, by sequences a(n) or p(n), n € Ny, with setting p(0) = 1. We say that
a(n) is partition (counting) function, p(n) is component function and A(x) = Y " a(n)x”
is partition generating function, shortly PGF. Set rank (p) := 3 p(n) the rank of PGF.
The property f(n-1)/f(n) = 1 as n — oo, where f(n) is eventually positive, is called
RT;. Similarly we define property RT, for p € R.
A PGF A(x) is reduced if ged{n : p(n) >0} = 1. If it is not, define d = ged{n : p(n) >
0} > 1 and PGF A*(z) with component function p*(n) := p(nd) and counting function
a*(n) := a(nd). Then A*(x) is reduced and called reduced form of A(x).

Results

Theorem 1 (Bell) Let (1) be reduced partition identity. If p(n) is polynomially bounded,
that is, p(n) = O(n?) for some v € R, then a(n) satisfies RT;.

Theorem 2 (Bell and Burris) Suppose component function p(n) satisfies RTy, that is
p(n-1)/p(n) - 1 as n - oo. Then also partition function a(n) satisfies RTj.

Theorem 3 (Stewart’s Sum Theorem) If for j = 1,2 we have partition identity
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and each aj(n) satisfies RT;. Then also a*(n) satisfies RT;
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with p(n) = p1(n) + pa(n).

Theorem 4 Finite rank implies polynomial growth for a(n). More precisely, if (1) is
reduced and 7 := rank (p) < co then a(n) ~ C'-n"~! for some positive constant C.

Theorem 5 Infinite rank implies superpolynomial growth for a(n). That is, if (1) is
reduced and r :=rank (p) = oo then for all k we have a(n)/n* - co as n - oo.

Theorem 6 (Schur) With 0 < p < oo suppose that f(n) satisfies RT,, G(z) has radius of
convergence grater than p, and G(p) > 0. Let H(x) = F(z)-G(z). Then h(n) ~ G(p) f(n).

Sandwich theorem

For L nonnegative integer set a”(n) := a(n) +a(n - 1) +---+a(n—-L). If PGF A has
eventually positive coefficients, denote by L, the least nonnegative integer L such that
a(n) >0 for all n > L.



Lemma 7 Let A(z) be a PGF with a(n) eventually positive. Then for every L > L, we
have that a”(n) is nonincreasing for all n and positive for n > Ly. Moreover a™(n) <
ma*(n) for m=1,2,... and n>0.

Lemma 8 Let A(z) be a PGF with a(n) eventually positive. Suppose L > L, is an
integer such that |a(n) —a(n -1)|=o(a*(n)). Then a(n) satisfies RT;.

Lemma 9 Suppose A;(x) and Ay(x) are two PGFs and L > L, a positive integer such
that, with A(x) = Ai(z) - Ay(z), ai(n) satisfies RTy, and af = o(a”(n)). Then a(n)
satisfies RT}.

Theorem 10 (Sandwich Theorem) Suppose A(z) is reduced PGF with a(n) satisfying
RT;. Then any
A(x) = Za(n)x = H(1 Zm) ()

n=0
satisfying p(n) < p(n) = O(a(n)) will be such that a(n) satisfies RT;.

Sandwich theorem can be used to prove Bell’s Theorem 1. Following theorem is about
necessity of conditions in Theorem 1.

Theorem 11 Let f(n) < 1 be a positive (nondecreasing) unbounded function. Then
there is a PGF A(x) satisfying RT; and component function p(n) satisfying p(n) < p(n) =
O(f(n)a(n)), such that a(n) fails to satisfy RT;.

The notation f(n) < g(n) menas that f(n) is eventually less or equal to g(n).

Theorem 12 (The Eventual Sandwich Theorem) Suppose p(n) satisfies RT; and p(n) <

p(n) = O(a(n)). I .
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then a(n) satisfies RT;.

Logical 0—1 Laws

Monadic second order (MSO) logic for relational structures is just the usual first order
logic augmented with variables and qualifiers for unary predicates.

Let A be a class of relational structures and P denote a subclass of connected struc-
tures. Class A is adequate if it is closed under disjoint union and extracting components.
Therefore, if A is adequate then generating function A(z) is PGF (satisfies partition
identity).

A class A of finite relational structures has a MSO 0-1 law if for every monadic second
order sentence ¢ the probability that ¢ holds in randomly chosen member of A is either
0 or 1.

Let a4(n) be the number of elements of A that have exactly n elements in their
universe. Analogicaly, pa(n) be the counting function for P.

Theorem 13 (Compton) If A in an adequate class and a4(n) satisfies RT; then A has
a monadic second-order 0-1 law.

Theorem 10 gives us vast array of partition identities satisfying RT;, and thus one has
a correspondingly vast array of classes of relational structures with monadic second-order
law.



