Towards dimension expanders over finite fields

Zeev Dvir, Amir Shpilka

Presented by Zuzana Safernová

Let \mathbb{F} be a field.

Definition 1 Let $A_1, \ldots, A_k \colon \mathbb{F}^n \to \mathbb{F}^n$ be linear mappings. The set $\mathcal{A} = \{A_i\}_{i=1}^k$ is a (d, α) -dimension expander if for every subspace $V \subseteq \mathbb{F}^n$, dim $V \subseteq d$ we have

$$\dim \left(V + \sum_{i=1}^{k} A_i(V)\right) \ge (1 + \alpha) \cdot \dim V.$$

 \mathcal{A} is explicit if there exists a poly(n)-time algorithm that, on input n, outputs \mathcal{A} .

Problem 2 Construct an explicit (d, α) -dimension expander $\mathcal{A} = \{A_i\}_{i=1}^k$, with $d = \Omega(n), \alpha = \Omega(1)$ and k = O(1).

Theorem 3 There exists a constant $\alpha > 0$ such that for every n there exists a set $\mathcal{A}(n)$ of $O(\log n)$ linear mappings from \mathbb{F}^n to \mathbb{F}^n that is an $(\Omega(n), \alpha)$ -dimension expander. Moreover, the construction is explicit and independent of the field \mathbb{F} .

Theorem 4 There exists a constant $k_0 > 0$ such that for every n there exists a set $\mathcal{A}(n)$ of k_0 linear mappings from \mathbb{F}^n to \mathbb{F}^n that is an $(\Omega(n), \Omega(1/\log n))$ -dimension expander. Moreover, the construction is explicit and independent of the field \mathbb{F} .

Towards the proofs

Let $v = (v_1, \ldots, v_n) \in \mathbb{F}^n$ be a non-zero vector.

- $\deg(v) := \text{the largest index } i \in [n] \text{ such that } v_i \neq 0$
- $D_V := \{ \deg(v) | v \in V, v \neq 0 \}$, where $V \leq \mathbb{F}^n$ and dim V = k; note that $|D_V| = k$
- Claim. Let $D_{A(V)} = \{ \deg(A(v)) | v \in V, A(v) \neq 0 \}$, where A is a linear mapping from \mathbb{F}^n to \mathbb{F}^n , then $\dim(V + A(V)) \geq |D_V \cup D_{A(V)}|$.
- Let H be a finite group, $M \in H$ the set of generators. The Cayley graph Cay(H,M) induced by M on H is the graph with vertex set H and $u \sim v$ iff $u \cdot v^{-1} \in M \cup M^{-1}$.

Theorem 5 (Wigderson, Xiao) There exist constants $\beta, \gamma > 0$ and an algorithm T such that on input n, the algorithm runs in poly(n) time and returns a set $J \subset [n]$ of size $O(\log n)$ such that J generates $(\mathbb{Z}_n, +)$ and the graph $Cay(\mathbb{Z}_n, J)$ is a $(\gamma n, \beta)$ -expander.

- $s_1, \ldots, s_n \colon \mathbb{F}^n \to \mathbb{F}^n$ are the *n* right cyclic shifts of coordinates of \mathbb{F}^n , i.e. $s_j(v) = (v_{n-j+1}, \ldots, v_n, v_1, v_2, \ldots, v_{n-j})$.
- $P_L, P_R : \mathbb{F}^n \to \mathbb{F}^n$ are defined as $P_L(v', v'') = (v'', \bar{0}), P_R(v', v'') = (\bar{0}, v'),$ where v'(v'') denotes the first (last) n/2 (n even) coordinates of v.

Lemma 6 Let n = p + 1 for an odd prime p. Let S_{p+1} denote the set of permutations on $\{1, \ldots, p+1\}$. Let $s_1, \ldots, s_p \in S_{p+1}$ denote the p right cyclic shifts on the set $\{1, \ldots, p\}$ such that $s_j(p+1) = p+1$ for every j. Then, there exists a set $M \in S_{p+1}$ of size $|M| \leq 7$ such that for every $j \in [p]$, the permutation s_j can be written as a word of length $O(\log p)$ using elements from $M \cup M^{-1}$. Moreover, this set can be generated in time polynomial in n.

- $P: \mathbb{F}^n \to \mathbb{F}^n$ is defined as $P(v) = (v_{(p+3)/2}, \dots, v_{p+1}, 0, \dots, 0)$.
- $Q_p \colon \mathbb{F}^n \to \mathbb{F}^n$ is defined as $Q_p(v) = (v_{p+2}, \dots, v_n, 0, \dots, 0)$.

Constructions

- Theorem 3: $\mathcal{A}(n) = \{s_j\}_{j \in J} \cup \{P_L, P_R\}$ is $(\gamma' n, \beta')$ -dimension expander, where n = 2m, $\gamma', \beta' > 0$, J given by Theorem 5, so $|J| \leq O(\log m)$.
- Theorem 4 and n = p + 1, p prime: $\mathcal{A}(n) = M \cup M^{-1} \cup \{P\}$ is an $(n/5, \Omega(1/\log n))$ -dimension expander, where M is given by Lemma 6, and $|M| \leq 7$.
- Theorem 4: $\mathcal{A}'(n) = \mathcal{A}(p+1) \cup \{Q_p\}$ is an $(n/10, \Omega(1/\log n))$ -dimension expander, where $\mathcal{A}(p+1)$ is dimension expander given above (we treat the mappings from $\mathcal{A}(p+1)$ as acting on \mathbb{F}^n by applying them only on the first p+1 coordinates and leaving the remaining coordinates untouched).