Counting Stars and Other Small Subgraphs in Sublinear Time

Mira Goen, Dana Ron, Yuval Shavitt presented by Marek Tesař

Let μ be a measure defined over graphs and let G be an unknown graph over n vertices. An algorithm for estimating $\mu(G)$ is given an approximation parameter ϵ , the number of vertices n, and query access to the graph G (degree queries and neighbor queries). Algorithm output an estimate $\hat{\mu}$ of $\mu(G)$ such that with hight constant probability, $\hat{\mu} = (1 \pm \epsilon).\mu(G)$, where for $\gamma \in (0,1)$ we use the notation $a = (1 \pm \gamma).b$ to mean that $(1 - \gamma).b \le a \le (1 + \gamma).b$.

We denote l(G) the number of length-2 paths in G. Set $\beta = \frac{\epsilon}{c}$ for some constant c > 1 and $t = \lceil \log_{(1+\beta)} n \rceil$ (so that $t = O(\frac{\log n}{\epsilon})$).

Definition For i = 0, ..., t define

$$B_i = \{v : deg(v) \in ((1+\beta)^{i-1}, (1+\beta)^i]\}$$

Algorithm 1(Estimating the number of length-2 paths for G = (V, E))

Input: ϵ and \tilde{l}

• 1. Let $\beta = \frac{\epsilon}{32}$, $t = \lceil \log_{(1+\beta)} n \rceil$, and

$$\theta_1 = \frac{\epsilon^{\frac{2}{3}} \tilde{l}^{\frac{1}{3}}}{32t^{\frac{4}{3}}}$$

- 2. Uniformly and independently select $\Theta(\frac{n}{\theta_1} \cdot \frac{\log t}{\epsilon^2})$ vertices from V, and let S denote the multiset of selected vertices (we allow repetitions).
- 3. For i = 0, ..., t determine $S_i = S \cap B_i$ by performing a degree query on every vertex in S.
- 4. Let $L = \{i : \frac{|S_i|}{|S|} \ge 2\frac{\theta_1}{n}\}.$ If $\max_{i \in L} \{2\binom{(1+\beta)^{i-1}}{2} \cdot \theta_1\} > 4\tilde{l}$ then terminate.
- 5. For each $i \in L$ run Algorithm 2 to get estimates $\{\hat{e}_{i,j}\}_{j \notin L}$ for $\{|E_{i,j}|\}_{j \notin L}$.
- 6. Output

$$\hat{l} = \sum_{i \in L} n \cdot \frac{|S_i|}{|S|} \cdot \binom{(1+\beta)^i}{2} + \sum_{j \notin L} \frac{1}{2} \sum_{i \in L} \hat{e}_{i,j} \cdot ((1+\beta)^j - 1)$$

$ ilde{l}$	Query and Time Complexity
$\tilde{l} \le n^{\frac{3}{2}}$	$O(\frac{n}{\tilde{l}_1^{\frac{1}{3}}}).poly(\log n, \frac{1}{\epsilon})$
$n^{\frac{3}{2}} \le \tilde{l} \le n^2$	$O(n^{\frac{1}{2}}).poly(\log n, \frac{1}{\epsilon})$
$n^2 \leq \tilde{l}$	$O(\frac{n^{\frac{3}{2}}}{\tilde{l}^{\frac{1}{2}}}).poly(\log n, \frac{1}{\epsilon})$

Theorem 0.1 If $\frac{1}{2}l(G) \leq \tilde{l} \leq 2l(G)$ then with probability at least $\frac{2}{3}$, the output, \hat{l} , of Algorithm 1 satisfies $\hat{l}=(1\pm\epsilon)\cdot l(G)$. The query complexity and running time of the algorithm are

$$O(\frac{n}{\tilde{l}^{\frac{1}{3}}} + \min\{n^{\frac{1}{2}}, \frac{n^{\frac{3}{2}}}{\tilde{l}^{\frac{1}{2}}}\}) \cdot poly(\log n, \frac{1}{\epsilon})$$

Theorem 0.2 Any constant-factor multiplication algorithm for the number of length-2 paths:

- 1) must perform $\Omega(\frac{n}{l^{\frac{1}{3}}(G)})$ queries
- 2) must perform $\Omega(\sqrt{n})$ queries when the number of length-2 paths is $O(n^2)$ 3) must perform $\Omega(\frac{n^{\frac{3}{2}}}{l^{\frac{1}{2}}(G)})$ queries when the number of length-2 paths is $\Omega(n^2)$

Theorem 0.3 For m = O(n) it is necessary to perform $\Omega(m)$ queries in order to distinguish with high constant probability between the case that a graph contains $\Theta(n)$ triangles and the case that it contains no triangles. This bound holds when neighbor and degree queries are allowed.

Theorem 0.4 For m = O(n) it is necessary to perform $\Omega(m)$ queries in order to distinguish with high constant probability between the case that a graph contains $\Theta(n^2)$ length-3 paths and the case that it contains no length-3 path. This bound holds when neighbor and degree queries are allowed.