Complexity measures of sign matrices

N. Linial, S. Mendelson, G. Schechtman and A. Shraibman

presented by Tereza Klimošová

Definition 1. Let E_1 be a norm on \mathbb{C}^n and E_2 a norm on \mathbb{C}^m . We define a norm $\|\cdot\|_{E_1\to E_2}$ on the space of complex matrices $m\times n$ by

$$||A||_{E_1 \to E_2} = \sup_{||x||_{E_1} = 1} ||Ax||_{E_2}.$$

We define a factorization constant for ℓ_2 of $m \times n$ matrix

$$\gamma_2(A) = \min_{XY - A} ||X||_{\ell_2 \to \ell_\infty^m} ||Y||_{\ell_1^n \to \ell_2}$$

$$\gamma_2(A) = \min_{XY=A} \max_{i,j} ||x_i||_{\ell_2} ||y_j||_{\ell_2},$$

where x_i are rows of X and y_j are columns of Y.

Definition 2. We say that a sign matrix A has margin

$$m(A) = \sup_{X,Y:sign(\langle x_i, y_j \rangle) = a_{ij}} \min_{i,j} \frac{|\langle x_i, y_j \rangle|}{\|x_i\| \|y_j\|}$$

and we denote $mc(A) = m(A)^{-1}$ margin complexity of A.

Definition 3. The sign pattern of a matrix B is the sign matrix (b_{ij}) . For a sign matrix A, let SP(A) be a family of matrices B satisfying $|b_{ij}| \ge 1$ and sp(B) = A.

Lemma 1. For every $m \times n$ signed matrix A,

$$mc(A) = \min_{XY \in SP(A)} ||X||_{\ell_2 \to \ell_\infty^m} ||Y||_{\ell_1^n \to \ell_2}$$

Corollary 2. $mc(A) \leq \gamma_2(A)$.

Fact 1.

$$||A^T||_{\ell_{\infty}^m \to \ell_1^n} \le \gamma_2^*(A^T) \le K_G ||A^T||_{\ell_{\infty}^m \to \ell_1^n}$$

Corollary 3. $mc(A) \ge \frac{mn}{\gamma_2^*(A^T)}$.

Lemma 4. For every complex $m \times n$ signed matrix A,

$$\gamma_2^2(A) \leq \|A\|_{\ell_1^n \to \ell_\infty^m} rank(A).$$

Definition 4. Let A be a sign matrix $m \times n$. We denote d(A) the smallest possible dimension d such that there exist vectors $x_1 \dots x_m$ and $y_1 \dots y_n$ such that $sign(\langle x_i, y_j \rangle) = a_{ij}$ for every i, j.

For every sign matrix $d(A) \leq rank(A)$. Gap can be arbitrarily large: $2I_n - J_n$ has rank = n and d = 2.

Lemma 5. For every $m \times n$ sign matrix A

$$d(A) \ge \frac{\sqrt{mn}}{\gamma_2^*(A)}.$$

Lemma 6.

$$Pr(\|A\|_{\ell_{\infty}^n \to \ell_1^m} \le 2mn^{1/2}) \ge 1 - (e/2)^{-2m},$$

where $m \geq n$, and the matrix A is drawn uniformly at random from among the $m \times n$ sigh matrices.

Lemma 7. Let $m \ge n$ and let A be a random $m \times n$ sign matrix. Denote m_{γ} the median of γ_2 , then

$$Pr(|\gamma_2(A) - m_\gamma)| > c) \le 4e^{-c^2/16}$$