An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance

Amit Chakrabati, Oded Regev

presented by Tomáš Gavenčiak

1 Introduction

In GAP-HAMMING-DISTANCE (or just GHD), Alice and Bob each have an n-bit string (x and y). Their goal is to distinguish between the cases $\Delta(x,y) \geq n/2 + \sqrt{n}$ and $\Delta(x,y) \leq n/2 - \sqrt{n}$ by communicating as few bits as possible. Note that the trivial protocol would use $\Theta(n)$ bits to transfer one of the strings.

 $GHD_{n,t,g}$ is the problem GHD with n-bit strings where Alice and Bob must distinguish between $\Delta(x,y) \geq t + g$ and $\Delta(x,y) \leq t - g$.

For a (partial) function $f: \mathcal{X} \times \mathcal{Y} \to \{0, 1, *\}$ (where * represent the undefined values), a (possibly randomized) protocol P fails on input (x, y) if $f(x, y) \neq *$ and $P(x, y) \neq f(x, y)$. Let cost(P) denote the worst-case communication cost of P in bits.

Randomized protocols. A randomized protocol P computes computes f with error at most ϵ if

$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y} : f(x,y) \neq * \implies \Pr[P(x,y) \neq f(x,y)] \leq \epsilon.$$

Let err(P) denote the least ϵ such that P computes f with error at most ϵ .

Also let $R_{\epsilon}(f) = \min_{P} \{ \operatorname{cost}(P), P \text{ is a randomized protocol for } f \text{ witherr}(P) \leq \epsilon \}.$

Deterministic protocols. Let $\operatorname{err}_{\mu}(P)$ denote the probability that P fails on (x, y) with (x, y) distributed according to μ .

Let $\operatorname{err}_{\mu}(P)$ denote the least ϵ such that P computes f on input distributed according to μ with error at most ϵ .

Also let $D_{\mu,\epsilon(f)} = \min_{P} \{ \cos(P), P \text{ is a deterministic protocol for } f \text{ with } \exp_{\mu}(P) \leq \epsilon \}.$

We use R(f) for $R_{1/3}(f)$ and $D_{\mu}(f)$ for $D_{\mu,1/3}(f)$.

Distributions. Let $\xi_{n,p}$ denote the distribution resulting from the following process: Pick x = y from $\{0,1\}^n$ uniformly, then flip every bit of y with probability (1-p)/2, output (x,y) (so $\xi_{n,0}$ is uniform on $\{0,1\}^{2n}$). We omit n where clear from the context.

2 Main result

Theorems 2.6 and 2.7 (Main result)

$$R(GHD_{n,n/2,\sqrt{n}}) = \Omega(n)$$

Moreover, there exists an absolute constant $\epsilon > 0$ for which

$$D_{\xi_0,\epsilon}(\mathrm{GHD}_{n,n/2,\sqrt{n}}) = \Omega(n)$$

3 Reductions

Yao's principle. For any (communication) problem, there is a distribution α over the correct deterministic algorithms A and a distribution ξ over the inputs X such that

$$\max_{x \in X} \mathbb{E}_{a \sim \alpha}(\cot_a(x)) = \min_{a \in \alpha} \mathbb{E}_{x \sim \xi}(\cot_a(x)).$$

This implies $R_{\epsilon}(f) \geq D_{\mu,\epsilon}(f)$ for any ϵ , f and μ .

Lemma 4.1 For all integers n, t, q, k, l > 0:

- (1) $R(GHD_{n,t,g+k}) \le R(GHD_{n,t,g})$
- (2) $R(GHD_{n,t,q}) \leq R(GHD_{kn,kt,kq})$
- (3) $R(GHD_{n,t,q}) \leq R(GHD_{n+k+l,t+k,q})$
- (4) $R(GHD_{n,t,q}) = R(GHD_{n,n-t,q})$

Lemma 4.2 For all integers n > 0 and reals b > 0 and $b \le \sqrt{n}/2$, we have

$$R(\mathrm{GHD}_{n,n/2-b\sqrt{n},\sqrt{2n}}) \le R(\mathrm{GHD}_{2n,n,\sqrt{2n}}).$$

Lemma 4.T There exist $\delta_0 > 0$, a > 0 and b > 0 such that for every deterministic protocol P for $GHD_{2n,n,\sqrt{n}}$ with $err_{\mu_{2n,0}}(P) = \delta \leq \delta_0$ there is a randomized protocol Q showing that $R(GHD_{n,n/2-b\sqrt{n},\sqrt{2n}}) = O(D_{\xi_0}(GHD))$.

4 Rectangles and Corruption

A set $R \in X \times Y$ is a rectangle if $R = \mathcal{X} \times \mathcal{Y}$ for $\mathcal{X} \subseteq X$ and $\mathcal{Y} \subseteq Y$.

Lemma 2.1 For a deterministic protocol P on $X \times Y$ communicating c bits, for every output value $z \in Z$, there exist 2^c pairwise disjoint rectangles $R_{1,z}, \ldots, R_{2^c,z}$ such that for all $(x,y) \in X \times Y$ we have

$$P(x,y) = z \iff (x,y) \in \bigcup_{i=1}^{2^c} R_{i,z}.$$

Theorem 2.2 For all $\alpha_0, \alpha_1, \alpha_+, \epsilon > 0$ with $\epsilon < (\alpha_1 - \alpha_+)/(\alpha_0 + \alpha_1)$, there exist $\beta \in \mathbb{R}$ and $\epsilon' > 0$ such that:

Let $f: X \times Y \to \{0, 1, *\}$, $A_i = f^{-1}(i)$. Suppose there are distributions μ_0, μ_1, μ_+ on $X \times Y$ and m > 0 such that

- (1) for $i \in \{0, 1\}, \mu_i(A_i) \ge 1 \epsilon$
- (2) for all rectangles $R \subseteq X \times Y$, $\alpha_1 \mu_1(R) \alpha_+ \mu_+(R) \le \alpha_0 \mu_0(R) + 2^{-m}$

Then, for $\nu = (\alpha_0 \mu_0 + \alpha_1 \mu_1)/(\alpha_0 + \alpha_1)$, we have $D_{\nu,\epsilon'}(f) \geq m + \beta$.

4.1 Towards the main theorem

Let $f_b = GHD_{n,n/2-b\sqrt{n},\sqrt{2n}}$.

Lemma 2.4 For all $\epsilon > 0$ there exists b > 0 such that for n large enough, $\xi_{4b/\sqrt{n}}(A_0) \ge 1 - \epsilon$, and $\xi_0(A_1) \ge 1 - \epsilon$ where $A_i = f_b^{-1}(i)$.

Lemma 2.5 For all b > 0 there is $\delta > 0$ such that for n large enough,

$$\forall R \subseteq \{0,1\}^n \times \{0,1\}^n \text{ rectangular} : \frac{1}{2} \left(\xi_{-4b/\sqrt{n}}(R) + \xi_{4b/\sqrt{n}}(R) \right) \ge \frac{2}{3} \xi_0(R) - 2^{-\delta n}$$

Let $\epsilon = 1/8$, let b be as in Lemma 2.4, let δ be as in Lemma 2.5, let n be large enough (for 2.4 and 2.5). Also let $m = \delta n$, $\mu_0 = \xi_{4b/\sqrt{n}}$, $\alpha_0 = 1/2$, $\mu_1 = \xi_0$, $\alpha_1 = 2/3$, $\mu_+ = \xi_{-4b/\sqrt{n}}$, $\alpha_+ = 1/2$, $\epsilon = 1/8$ and $f_b = \text{GHD}_{n,n/2-b\sqrt{n},\sqrt{2n}}$.

4.2 Steps for Lemma 2.5

Let γ^n denote *n*-dimensional Gauss distribution with density $Ze^{-\|x\|^2/2}$ (Z is a normalizing element).

A η -correlated gaussioan pair (x, y) has the following distribution: choose x and z from γ^n independently and then set $y = \eta x + \sqrt{1 - \eta^2} z$.

Theorem 3.5 For all $c, \epsilon > 0$, there is $\delta > 0$ such that for n large enough and $0 \le \eta \le c/\sqrt{n}$ and all $A, B \subseteq \mathbb{R}^n$ with $\gamma^n(A), \gamma^n(B) \ge e^{-\delta n}$ we have

$$\frac{1}{2} \left(\Pr_{(x,y) \text{ is } \eta - corr.} [x \in A, y \in B] + \Pr_{(x,y) \text{ is } -\eta - corr} [x \in A, y \in B] \right) \ge (1 - \epsilon) \gamma^n(A) \gamma^n(B).$$

Corollary 3.8 For all $c, \epsilon > 0$, there is $\delta > 0$ such that for n large enough and $0 \le p \le c/\sqrt{n}$ and all $A, B \subseteq \{0,1\}^n$ with $|A|, |B| \ge 2^{(1-\delta)n}$ we have

$$\frac{1}{2}\left(\xi_{-p}(A\times B) + \xi_p(A\times B)\right) \ge (1-\epsilon)\xi_0(A\times B).$$

Recall that $D(P||Q) = \int P(x) \ln(P(x)/Q(x))\dot{x}$. Let $D_{\gamma}(X) = D(P||\gamma)$ for $X \sim P$.

Theorem 3.1 (the taste of Gauss) For all $\epsilon, \delta > 0$ and n large enough, have $A \in \mathbb{R}^n$ such that $\gamma^n(A) \geq e^{-\epsilon^2 n}$. Then for all but $e^{-\delta n/36}$ of unit vectors $y \in \S^{n-1}$ the distribution of the projection $\langle x, y \rangle$ where $x \sim \gamma^n|_A$ is equal to $\alpha X + Y$ for some $1 - \delta \leq \alpha \leq 1$ and (possibly dependent) random variables X and Y satisfying

$$D_{\gamma}(X|Y) \leq \epsilon$$
.