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1 Introduction

In GAP-HAMMING-DISTANCE (or just GHD), Alice and Bob each have an n-bit string (x and
y). Their goal is to distinguish between the cases A(x,y) > n/2++/n and A(z,y) < n/2—/n
by communicating as few bits as possible. Note that the trivial protocol would use ©(n) bits
to transfer one of the strings.

GHD,, ;4 is the problem GHD with n-bit strings where Alice and Bob must distinguish
between A(z,y) >t+ g and A(z,y) <t —g.

For a (partial) function f : X x Y — {0,1,*} (where * represent the undefined values), a
(possibly randomized) protocol P fails on input (z,y) if f(x,y) # * and P(x,y) # f(x,y).
Let cost(P) denote the worst-case communication cost of P in bits.

Randomized protocols. A randomized protocol P computes computes f with error at most
€ if

V(z,y) € X X YV : f(z,y) #* = Pr[P(z,y) # f(z,y)] <e.
Let err(P) denote the least € such that P computes f with error at most e.

Also let R.(f) = minp{cost(P), Pis a randomized protocol for fwitherr(P) < €}.

Deterministic protocols. Let err,(P) denote the probability that P fails on (z,y) with
(x,y) distributed according to p.

Let err,(P) denote the least e such that P computes f on input distributed according to p
with error at most e.

Also let D,, .(yy = minp{cost(P), P is a deterministic protocol for f with err,(P) < ¢}.
We use R(f) for Rl/g(f) and D, (f) for Du71/3(f).

Distributions. Let {,, denote the distribution resulting from the following process: Pick
x =y from {0, 1}" uniformly, then flip every bit of y with probability (1 —p)/2, output (z,y)
(so &n 0 is uniform on {0,1}?"). We omit n where clear from the context.



2 Main result

Theorems 2.6 and 2.7 (Main result)
Moreover, there exists an absolute constant ¢ > 0 for which

DEO,E(GHDn,n/Z\/ﬁ) = Q(n)

3 Reductions

Yao’s principle. For any (communication) problem, there is a distribution a over the correct
deterministic algorithms A and a distribution & over the inputs X such that

max Eg~a(costq(z)) = Icllnelél E;~¢(costq(x)).
This implies Rc(f) > D,c(f) for any €, f and p.
Lemma 4.1 For all integers n,t,g,k,l > 0:
(1) R(GHD, +4) < R(GHD,,.; ,)
(2) R(GHDy,ty) < R(GHDgp kt kg)
(3) R(GHDy1,9) < R(GHDuyk41,t4k,g)
(4) R(GHD,,t4) = R(GHDy, ;,—t,9)

Lemma 4.2 For all integers n > 0 and reals b > 0 and b < y/n/2, we have

Lemma 4.T There exist dg > 0, a > 0 and b > 0 such that for every deterministic protocol
P for GHD,,, ,, s with erry,, ,(P) = 4§ < d there is a randomized protocol ) showing that

R(GHD,, 5 4/ van) = O(Dg (GHD)).

4 Rectangles and Corruption

Aset Re X xY isarectangleif R=X xYfor ¥ C X and Y CY.

Lemma 2.1 For a deterministic protocol P on X XY communicating ¢ bits, for every output
value z € Z, there exist 2° pairwise disjoint rectangles R ., ..., Rac . such that for all (z,y) €
X XY we have

P(x,y) =2z < (z,y9) UR”



Theorem 2.2 For all ag, a1, a4,€e > 0 with € < (a1 — ay)/(ap + 1), there exist § € R and
¢’ > 0 such that:

Let f: X xY — {0,1,%}, A; = f~1(i). Suppose there are distributions i, p1, g+ on X x Y
and m > 0 such that

(1) for i € {0,1}, pui(Ai) >1—¢
(2) for all rectangles R C X XY, aju1(R) — arps(R) < aguo(R) +27™
Then, for v = (aguo + a1p1)/(c + 1), we have Dy, o (f) > m + .

4.1 Towards the main theorem

Lemma 2.4 For all € > 0 there exists b > 0 such that for n large enough, 4/, /5 (A0) > 1 —¢,
and £y(A1) > 1 — € where A; = fb_l(i).

Lemma 2.5 For all b > 0 there is § > 0 such that for n large enough,

1 2
VR C {0,1}" x {0,1}" rectangular : 5 (5,4b/\/5(R) + £4b/\/ﬁ(R)) > gfo(R) —7on

Let € = 1/8, let b be as in Lemma 2.4, let § be as in Lemma 2.5, let n be large enough (for
2.4 and 2.5). Also let m = dn, pig = &gy /m> @0 = 1/2, 1 = &o, a1 = 2/3, py = & ) /s
ay =1/2,e=1/8 and f, = GHD,, .. /5_ /n.v/an-

4.2 Steps for Lemma 2.5

Let 4™ denote n-dimensional Gauss distribution with density Ze~ll=l*/2 (Z is a normalizing
element).

A n-correlated gaussioan pair (z,y) has the following distribution: choose z and z from ~"
independently and then set y = nz + /1 — n2z.

Theorem 3.5 For all ¢,e > 0, there is 6 > 0 such that for n large enough and 0 < n < ¢/\/n
and all A, B C R" with y*(A),+"(B) > e %" we have

1 <(w) Pr [t € Ay e Bl + Pr [méA,yGB]) > (1 — e)y"(AV"(B).

2 is m—corr. (z,y) is —n—corr

Corollary 3.8 For all ¢,e > 0, there is § > 0 such that for n large enough and 0 < p < ¢/\/n
and all A, B C {0,1}" with |A|,|B| > 20-9" we have
1

S (Ep(A X B)+§(Ax B)) = (1 - (4 x B).



Recall that D(P||Q) = [ P(z)In(P(z)/Q(x))x. Let D,(X) = D(P|}y) for X ~ P.

Theorem 3.1 (the taste of Gauss) For all €, > 0 and n large enough, have A € R" such
that v"(A) > e~<". Then for all but e 97/36 of unit vectors y € §"~! the distribution of the
projection (x,y) where x ~ ~"|4 is equal to X + Y for some 1 — ¢ < a < 1 and (possibly
dependent) random variables X and Y satisfying

D (X]Y) <e.



