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Combinatorial input

Theorem 1 (Erdds-Szekeres) For all integers r,s, any sequence of n > (r —1)(s—1)
numbers contains either a non-increasing subsequence of lenght r of increasing sequence
of lenght s.

Theorem 2 (bichomatic Ramsey for hypergraphs) For all p,a,b € N, there is a natural
number R = R,(a,b) such that for any set S of size R and any 2-coloring c: (i) - {1,2}

of all subsets of S of size p, there is either a set A of size a such that all p-tuples in (2)

have colour 1 or a set B of size b such that all p-tuples in (]j) have colour 2.

Theorem 3 (Erdés-Szekeres happy ending theorem) For any & there is a number ES(k)
such that in any set S ¢ R? of ES(k) points in general position there is k£ points in a
convex position.

Center transversal theorem

Center transversal theorem is generalization of both ham-sandwich cut theorem and
centerpoint theorem.

Let H be the set of all open halfspaces in R? and G be a family of subsets of R?
containing H and closed under union. A charge p is a finite set function that is defined
for all set X € G, and is monotone (X ¢ Y implies u(X) < u(Y')) and subadditive, that is
w(X oY) <u(X)+u(Y). A charge u is concentrated on set X, if for all halfspaces h € H
such that hn X = @ we have u(h) = 0.

Theorem 4 (Dolnikov, 1992) For arbitrary k charges p;,i = 1,...,k, defined on G and
concentrated on bounded sets, there is a (k- 1)-flat 7 such that
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for all open halfspaces h € H containing 7.

We say that charge p is H-subaditive if for any finite set H ¢ ‘H we have

p(Unerh) < ) u(h).

heH

Totally ordered unital magma (M,®,<,e) is a totally ordered set M endowed with
binary operation @ such that M is closed under @, operation & has neutral element e,
and is monotone, that is, a®@c<b® c and ¢® a < c® b holds whenever a < b. Further, for
all z € M and ce N, define cx =@‘x:=x @ (z® (... ®x)...), where the operation & was
used c-times.

Theorem 5 Let ;0 =1,...,k, be k set functions defined on G and taking values in a
totally ordered unital magma (M, ®,<,e). Let §; € M be such that (d -k +2)d; < p;(R?).



If the functions u; are monotone, H-subaditive and concentrated on bounded sets, there
is a (k- 1)-flat 7 such that
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for all open halfspaces h € H containing 7.

Center transversal theorem for arrangements

Let A be an arrangement of n hyperplanes in R%. Denote by V(A) the set of all
vertices of A and by CH(A) =CH(V(A)) the convex hull of those points.

We say that the arrangements A, As, ..., Ay are disjoint if their convex hulls do not
intersect. They are separable if they are disjoint and no hyperplane intersects d + 1 of
them simultaneously.

Let H be the set of all open halfspaces in R¢ and G be an additive family of subsets of
R9 that contains H. For any set S € G, let 114(.S) be the maximum number of hyperplanes
that have all their vertices inside S, that is,

S) = B|.
Ha(S) = o S es Pl

In particular, ps(R%) = us(CH(A)) =n and pus(@)=d- 1.

Case of lines in R?

Lemma 6 For any two sets S; € H and S; € G we have

11a(S10 82) < pa(S1)pa(S2).

Corollary 7 The set function p 4, which takes values in the totally ordered unital magma
(R,-,<,1), is monotone and H-subaditive.

Theorem 8 For any arrangemets A; and A, of lines in R?, there exists a line ¢ bounding
closed halfplanes £+ and ¢~ and sets A%,i € {1,2},6 € {+,~} such that A% c A;,|A?] > |4;]'/2
and V(A?) e (.

The bound in the above theorem is tight. Applying generalized center transversal
theorem with k =1 gives:

Theorem 9 For any arrangemets A of lines in R?, there exists a point ¢ such that for
every halfplane h containing ¢ there is a set A’ ¢ A,|A’| > |A|'/3, such that V(A’) € h.

This bound is not tight as proves following theorem. However, we do not know,
whether the following bound is tight.

Theorem 10 For any arrangemets A of lines in R?, there exists a point ¢ such that for
every halfplane h containing ¢ there is a set A’ € A, |A’| > (JA|/3)/2, such that V(A’) € h.

Case of hyperplanes in R¢

Lemma 11 For any two sets S; € H and S5 € G we have

pa(S1uS) < Ra(pa(S1) +1,pa(S2) +1) - 1.



Define the operator @ as a®b = Rg(a+1,b+1)—1. The operator @ is increasing, closed
on the set Ny 1. Since Ry(d,z) = z for all z € N,y 1, d is a neutral element. Therefore
(Nsg_1,®,<,d—1) is a totally ordered unital magma.

Corollary 12 The set function p, takes values in the totally ordered unital magma
(Nyg_1,®,<,d - 1), it is monotone and H-subaditive.

Define Q(z,c) :== max{y e N: @°y < x}. Apply generalized center transversal theorem
to obtain:

Theorem 13 Let Ay, ..., A; be k sets of hyperplanes in R, There exist a (k- 1)-flat 7
such that for every open halfspace h that contains m,

Corollary 14 Let Ay,..., Ay be d sets of hyperplanes in R?. There exists a hyperplane
7 bounding the two closed halfspaces 7+ and 7~ and sets A% € A;,i € [d],d € {+,-} such
that V(A?) e w0 and |A%] @ |A?| > | Ay

Corollary 15 Let Ay,..., A; be d sets of hyperplanes in R%, no r + 1 of which intersect
in a common point. There exists a hyperplane 7 bounding the two open halfspaces 7+
and 7~ and sets A% € A;,i € [d],d € {+,-} such that V(A?) e 7% and (JA%|@|A%]) @r > |A,|.

Same-type lemma for hyperplane arrangements

A transversal of a collection of sets X1, ..., X,, is a m-tuple (x1,...,z,,) where x; € X;.
The sets X1,..., X1 in R? have same-type transversals if they are well separated, that
is, for all disjoint sets of indices I,J € [d + 1] there is a hyperplane separating the sets
X;,i €I from the sets X;,j € J. The sets Xy,..., X, in R4 m > d+ 1, have same-type
transversals if any d + 1 of them have the same-type transversals.

Lemma 16 For any integers d,m,r, there is a growing function f = f,, 4, such that for
any collection of m hyperplane arrangements Ay, ..., A,, in R% where no r+1 hyperplanes
intersect in a common point, there are sets Al € A;,7 € [m], such that |Al] > f(|4;]) and
the sets CH(A}),...,CH(A!,) have same-type transversals.

Theorem 17 For every integers k,r,c, there is an integer N such that any arrangement
A of N lines in R?, such that no r + 1 lines go through a common point, contains disjoint
subsets Aj,..., A, with |4;] > ¢ and such that every transversal of CH(A;),...,CH(Ag)
is in convex position.

Applications in graph drawing

A set of n lines in the plane labelled from 1 to n supports G with vertex labelling 7 if
there exist straight-line crossing-free drawing of G where for each i € [n], vertex labelled
7 in G is mapped to a point on a line i. A set L of n lines labelled from 1 to n supports
an n-vertex graph G if for every vertex labelling 7 of GG, L supports G with labelling 7.

Theorem 18 For some absolute constant ¢ and every n > ¢/, there exist no set of n lines
in the plane that support all labelled n-vertex planar graphs.

Theorem 19 Given a set L of n lines in the plane, every planar graph has a straight-line
crossing-free drawing where each vertex of GG is placed on the distinct line of L.



