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Basic definitions

Polynomial identity testing (PIT) is the problem of checking whether a given n-variate arith-
metic circuit computes the zero polynomial in K[x1, . . . , xn].

By a blackbox PIT test for a family of circuits F we mean efficiently designing a hitting
set H ⊆ K

n
such that: Given a nonzero C ∈ F , there exists an a ∈ H that hits C, i. e.

C(a) = 0.
Polynomials {f1, . . . , fm} ⊂ K[x1, . . . , xn] (over a field K) are algebraically independent if

there is no non-zero polynomial F such that F (f1, . . . , fm) = 0. The transcendence degree,
trdeg{f1, . . . , fm}, is the maximal number r of algebraically independent polynomials.

Results

Theorem 1 Let C be an m-variate circuit. Let f1, . . . , fm be `-sparse, degree-δ, n-variate
polynomials of transcendence degree r. Suppose we have oracle access to the n-variate degree-d
circuit C ′ := C(f1, . . . , fm). There is a blackbox poly(size(C ′)d`δ)r time test to check C ′ = 0
(assuming that K has characteristic zero or larger than δr).

Theorem 2 Let C be a
∑∏∑∏

δ(2, s, n) circuit over an arbitrary field. There is a blackbox

poly(δsn)δ
2
time test to check C = 0.

Perron, Jacobi & Krull

K[x] = K[x1, . . . , xn], K – a field, K – the algebraic closure of K, R∗ = multiplicative group
of units of a ring R

Theorem 3 (Perron) Let f1, . . . , fn+1 ∈ K[x] be non-constant polynomials of degree δi
for i ∈ [n + 1]. Then there exists a non-zero polynomial F ∈ K[y1, . . . , yn+1] such that
F (f1, . . . , fn+1) = 0 and degF ≤

∏
i δi/mini{δi}.

Corollary 4 Let f1, . . . , fm ∈ K[x] be algebraically dependent polynomials of maximal degree
δ ≥ 1 and trdeg r. Then there exists a non-zero polynomial F ∈ K[y1, . . . , ym] of degree at
most δr such that F (f1, . . . , fm) = 0.

Theorem 5 (Jacobi) Let f1, . . . , fm ∈ K[x] be polynomials of degree at most δ and trdeg
r. Assume that ch(K) = 0 or ch(K) > δr. Then rkLJx(f1, . . . , fm) = trdegK{f1, . . . , fm},
where L = K(x).

Lemma 6 Let f1, . . . , fm ∈ K[x]. Then trdegK{f1, . . . , fm} ≥ rkLJx(f1, . . . , fm), where
L = K(x).

Definition 7 A K-algebra A is a commutative ring (with 1) containing K as a subring. A
map A → B is K-algebra homomorfism if it is a ring homomorphism that fixes K element-
wise. Let a1, . . . , am ∈ A, consider ϕ : K[y] → A, ϕ(F ) = F (a1, . . . , am), where K[y] =

1



K[y1, . . . , ym]. If kerϕ = {0}, then {a1, . . . , am} are algebraically independent over K. For
S ⊆ A define

trdegK(S) := sup{|T |, T ⊆ S is finite and algebraically independent}

The image of K[y] under ϕ is the subalgebra of A generated by a1, . . . , am and is denoted
by K[a1, . . . , am]. An algebra of this form is called an affine K-algebra, and it is called an
affine K-domain if it is an integral domain. The Krull dimension of A, denoted by dim(A),
is defined as the supremum over all r ≥ 0 for which there is a chain P0 ( P1 ( · · · ( Pr of
prime ideals Pi ( A.

Theorem 8 Let A = K[a1, . . . , am] be an affine K-algebra. Then dim(A) = trdegK(A) =
trdegK{a1, . . . , am}.

Corollary 9 Let A,B be K-algebras and let ϕ : A → B be a K-algebra homomorphism. If
A is an affine algebra, then so is ϕ(A) and we have dim(ϕ(A)) ≤ dim(A). If, in addition, ϕ
is injective, then dim(ϕ(A)) = dim(A).

Theorem 10 (Krull’s Hauptidealsatz) Let A be an affine K-domain and let a ∈ A\(A∗∪
{0}). Then dim(A/<a>) = dim(A)− 1.

Faithful homomorphisms: reducing the variables

K[z] = K[z1, . . . , zr], where r =trdeg{f1, . . . , fm}.
Definition 11 Let ϕ : K[x] → K[z] be a K-algebra homomorphism. We say ϕ is faithful to
{f1, . . . , fm} if trdeg{ϕ(f1), . . . , ϕ(fm)} = trdeg{f1, . . . , fm}.

Theorem 12 Let A = K[f1, . . . , fm] ⊆ K[x]. Then ϕ is faithful to {f1, . . . , fm} if and only
if ϕ|A : A → K[z] is injective (iff A ∼= K[ϕ(f1), . . . , ϕ(fm)]).

Corollary 13 Let C be an m-variate circuit over K. Let ϕ be faithful to {f1, . . . , fm} ⊆ K[x].
Then, C(f1, . . . , fm) = 0 iff C(ϕ(f1), . . . , ϕ(fm)) = 0.

Lemma 14 (Existence). Let K be an infinite field and let f1, . . . , fm ∈ K[x] be polynomials
of trdeg r. Then there exists a linear K-algebra homomorphism ϕ : K[x] → K[z] which is
faithful to {f1, . . . , fm}.

Sketch of the proof of Theorem 1

We consider arithmetic circuits of the form C(f1, . . . , fm), where C is a circuit computing
a polynomial in K[y] = K[y1, . . . , ym] and f1, . . . , fm are subcircuits computing polynomials
in K[x]. Thus, C(f1, . . . , fm) computes a polynomial in the subalgebra K[f1, . . . , fm]. Let
C(f1, . . . , fm) be of maximal degree d, and let f1, . . . , fm be of maximal degree δ, maximal
sparsity ` and maximal transcendence degree r. We denote the class of those circuits by
Fd,r,δ,`.

First, we use a faithful homomorphism to transform C(f1, . . . , fm) into an r-variate circuit.
Then, we construct a hitting set for r-variate degree-d polynomials, provided by the non-
vanishing version of the Combinatorial Nullstellensatz.

Theorem 15 (Combinatorial Nullstellensatz) Let H ⊆ K be a subset of size d+1. Then
H = Hr is a hitting set for {f ∈ K[z1, . . . , zr]|deg(f) ≤ d}.
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