Algebraic Independence and Blackbox Identity Testing

M. Beecken, J. Mittmann, N. Saxena

Presented by Zuzana Safernová

Basic definitions

Polynomial identity testing (PIT) is the problem of checking whether a given n-variate arithmetic circuit computes the zero polynomial in $K[x_1, \ldots, x_n]$.

By a blackbox PIT test for a family of circuits \mathcal{F} we mean efficiently designing a hitting set $\mathcal{H} \subseteq \overline{K}^n$ such that: Given a nonzero $C \in \mathcal{F}$, there exists an $\overline{a} \in \mathcal{H}$ that hits C, i. e. $C(\overline{a}) = 0$.

Polynomials $\{f_1, \ldots, f_m\} \subset K[x_1, \ldots, x_n]$ (over a field K) are algebraically independent if there is no non-zero polynomial F such that $F(f_1, \ldots, f_m) = 0$. The transcendence degree, $trdeg\{f_1, \ldots, f_m\}$, is the maximal number r of algebraically independent polynomials.

Results

Theorem 1 Let C be an m-variate circuit. Let f_1, \ldots, f_m be ℓ -sparse, degree- δ , n-variate polynomials of transcendence degree r. Suppose we have oracle access to the n-variate degree-d circuit $C' := C(f_1, \ldots, f_m)$. There is a blackbox poly(size(C')d $\ell\delta$) r time test to check C' = 0 (assuming that K has characteristic zero or larger than δ^r).

Theorem 2 Let C be a $\sum \prod \sum \prod_{\delta} (2, s, n)$ circuit over an arbitrary field. There is a blackbox $poly(\delta sn)^{\delta^2}$ time test to check C = 0.

Perron, Jacobi & Krull

 $K[\overline{x}] = K[x_1, \dots, x_n], K$ – a field, \overline{K} – the algebraic closure of $K, R^* =$ multiplicative group of units of a ring R

Theorem 3 (Perron) Let $f_1, \ldots, f_{n+1} \in K[\overline{x}]$ be non-constant polynomials of degree δ_i for $i \in [n+1]$. Then there exists a non-zero polynomial $F \in K[y_1, \ldots, y_{n+1}]$ such that $F(f_1, \ldots, f_{n+1}) = 0$ and $\deg F \leq \prod_i \delta_i / \min_i \{\delta_i\}$.

Corollary 4 Let $f_1, \ldots, f_m \in K[\overline{x}]$ be algebraically dependent polynomials of maximal degree $\delta \geq 1$ and trdeg r. Then there exists a non-zero polynomial $F \in K[y_1, \ldots, y_m]$ of degree at most δ^r such that $F(f_1, \ldots, f_m) = 0$.

Theorem 5 (Jacobi) Let $f_1, \ldots, f_m \in K[\overline{x}]$ be polynomials of degree at most δ and trdeg r. Assume that $\operatorname{ch}(K) = 0$ or $\operatorname{ch}(K) > \delta^r$. Then $\operatorname{rk}_L J_x(f_1, \ldots, f_m) = \operatorname{trdeg}_K \{f_1, \ldots, f_m\}$, where $L = K(\overline{x})$.

Lemma 6 Let $f_1, \ldots, f_m \in K[\overline{x}]$. Then $\operatorname{trdeg}_K\{f_1, \ldots, f_m\} \geq \operatorname{rk}_L J_x(f_1, \ldots, f_m)$, where $L = K(\overline{x})$.

Definition 7 A K-algebra A is a commutative ring (with 1) containing K as a subring. A map $A \to B$ is K-algebra homomorphism if it is a ring homomorphism that fixes K elementwise. Let $a_1, \ldots, a_m \in A$, consider $\varphi : K[\overline{y}] \to A$, $\varphi(F) = F(a_1, \ldots, a_m)$, where $K[\overline{y}] = A$

 $K[y_1,\ldots,y_m]$. If $\ker \varphi = \{0\}$, then $\{a_1,\ldots,a_m\}$ are algebraically independent over K. For $S \subseteq A$ define

$$\operatorname{trdeg}_K(S) := \sup\{|T|, T \subseteq S \text{ is finite and algebraically independent}\}$$

The image of $K[\overline{y}]$ under φ is the subalgebra of A generated by a_1, \ldots, a_m and is denoted by $K[a_1, \ldots, a_m]$. An algebra of this form is called an affine K-algebra, and it is called an affine K-domain if it is an integral domain. The Krull dimension of A, denoted by dim(A), is defined as the supremum over all $r \geq 0$ for which there is a chain $P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_r$ of prime ideals $P_i \subsetneq A$.

Theorem 8 Let $A = K[a_1, ..., a_m]$ be an affine K-algebra. Then $dim(A) = trdeg_K(A) = trdeg_K\{a_1, ..., a_m\}$.

Corollary 9 Let A, B be K-algebras and let $\varphi : A \to B$ be a K-algebra homomorphism. If A is an affine algebra, then so is $\varphi(A)$ and we have $\dim(\varphi(A)) \leq \dim(A)$. If, in addition, φ is injective, then $\dim(\varphi(A)) = \dim(A)$.

Theorem 10 (Krull's Hauptidealsatz) Let A be an affine K-domain and let $a \in A \setminus (A^* \cup \{0\})$. Then $dim(A/\langle a \rangle) = dim(A) - 1$.

Faithful homomorphisms: reducing the variables

 $K[\overline{z}] = K[z_1, \dots, z_r], \text{ where } r = \operatorname{trdeg}\{f_1, \dots, f_m\}.$

Definition 11 Let $\varphi: K[\overline{x}] \to K[\overline{z}]$ be a K-algebra homomorphism. We say φ is faithful to $\{f_1, \ldots, f_m\}$ if $\operatorname{trdeg}\{\varphi(f_1), \ldots, \varphi(f_m)\} = \operatorname{trdeg}\{f_1, \ldots, f_m\}$.

Theorem 12 Let $A = K[f_1, \ldots, f_m] \subseteq K[\overline{x}]$. Then φ is faithful to $\{f_1, \ldots, f_m\}$ if and only if $\varphi|_A : A \to K[\overline{z}]$ is injective (iff $A \cong K[\varphi(f_1), \ldots, \varphi(f_m)]$).

Corollary 13 Let C be an m-variate circuit over K. Let φ be faithful to $\{f_1, \ldots, f_m\} \subseteq K[\overline{x}]$. Then, $C(f_1, \ldots, f_m) = 0$ iff $C(\varphi(f_1), \ldots, \varphi(f_m)) = 0$.

Lemma 14 (Existence). Let K be an infinite field and let $f_1, \ldots, f_m \in K[\overline{x}]$ be polynomials of trdeg r. Then there exists a linear K-algebra homomorphism $\varphi : K[\overline{x}] \to K[\overline{z}]$ which is faithful to $\{f_1, \ldots, f_m\}$.

Sketch of the proof of Theorem 1

We consider arithmetic circuits of the form $C(f_1, \ldots, f_m)$, where C is a circuit computing a polynomial in $K[\overline{y}] = K[y_1, \ldots, y_m]$ and f_1, \ldots, f_m are subcircuits computing polynomials in $K[\overline{x}]$. Thus, $C(f_1, \ldots, f_m)$ computes a polynomial in the subalgebra $K[f_1, \ldots, f_m]$. Let $C(f_1, \ldots, f_m)$ be of maximal degree d, and let f_1, \ldots, f_m be of maximal degree d, maximal sparsity ℓ and maximal transcendence degree r. We denote the class of those circuits by $\mathcal{F}_{d,r,\delta,\ell}$.

First, we use a faithful homomorphism to transform $C(f_1, \ldots, f_m)$ into an r-variate circuit. Then, we construct a hitting set for r-variate degree-d polynomials, provided by the non-vanishing version of the Combinatorial Nullstellensatz.

Theorem 15 (Combinatorial Nullstellensatz) Let $H \subseteq K$ be a subset of size d+1. Then $\mathcal{H} = H^r$ is a hitting set for $\{f \in K[z_1, \ldots, z_r] | deg(f) \leq d\}$.