Approximate Center Points with Proofs

Gary L. Miller, Donald R. Sheehy

presented by Jaroslav Horáček

Definition (Centerpoint). A centerpoint of a set $S \subset \mathbb{R}^d$, |S| = n is a point c such that every closed half-space containing c also contains at least $\frac{n}{d+1}$ points of S.

Definition (β -center). Given a set S. Point $c \in S$ is called β -center if every closed half-space containing c also contains at least β fraction of the points of S.

Theorem (Radon, 1921). Given n > d+1 points $S \subset \mathbb{R}^d$, there exist a partition (U, \overline{U}) of S such that $conv(U) \cap conv(\overline{U}) \neq \emptyset$.

 \Rightarrow Radon partition + Radon point.

Theorem (The centerpoint theorem). Given a set of n points $S \subset \mathbb{R}^d$, there exist a centerpoint $c \in \mathbb{R}^d$ such that every closed half-space containing c also contains at least $\lceil \frac{n}{d+1} \rceil$ points of S.

Theorem (Helly, 1913). Given a collection of compact, convex sets $X_1, X_2, \ldots, X_n \subset \mathbb{R}^d$. If every d+1 of these sets have a common intersection, then the whole collection has a common intersection.

Theorem (Tverberg, 1966). Given (d+1)(r-1)+1 points $S \subset \mathbb{R}^d$, there exists a partition of S into S_1, S_2, \ldots, S_r , such that $\bigcap_{i=1}^r \operatorname{conv}(S_i) \neq \emptyset$.

 \Rightarrow Tverberg partition + Tverberg point + Depth of Tverberg point.

Theorem (Carathéodory, 1911). Given a point $c \in \mathbb{R}^d$ lying in the convex hull of a set P. If P has more than d+1 points, then there is a subset $P^* \subset P$ of size d+1 and c lies in the convex hull of P^* .

Lemma 1. Given a set P of d+2 Tverberg points of depth r with disjoint partitions, the Radon point of P has depth 2r.

Lemma 2. If there is a proof that a point p has depth r, there exists such a proof that contains at most r(d+1) points of S.

Theorem (Iterated-Tverberg analysis). Given n points in \mathbb{R}^d , the Iterated-Tverberg algorithm always returns a $\frac{n}{2(d+1)^2}$ -center.