An upper bound on the number of Steiner triple systems

Nathan Linial and Zur Luria Presented by Josef Cibulka

Definitions.

- Steiner triple system (STS) on V ... collection of triples $T \subseteq \binom{V}{3}$ such that each pair of vertices is contained in exactly one triple from T.
- STS(n) ... number of STS's on V of size n
- F(n) ... number of 1-factorizations of K_n
- L(n) ... number of $n \times n$ Latin squares

Observation. 1-factorizations of K_n and STS's correspond to special subclasses of Latin squares

Previous bounds.

$$\begin{split} \left(\frac{n}{e^2 3^{3/2}}\right)^{\frac{n^2}{6}} &\leq STS(n) \leq \left(\frac{n}{e^{1/2}}\right)^{\frac{n^2}{6}} \\ \left((1+o(1))\frac{n}{4e^2}\right)^{\frac{n^2}{2}} &\leq F(n) \leq \left((1+o(1))\frac{n}{e^2}\right)^{\frac{n^2}{2}} \\ L(n) &= \left((1+o(1))\frac{n}{e^2}\right)^{n^2}. \end{split}$$

Theorem 1.

$$STS(n) \le \left((1 + o(1)) \frac{n}{e^2} \right)^{\frac{n^2}{6}}.$$

Conjecture.

$$STS(n) = \left((1 + o(1)) \frac{n}{e^2} \right)^{\frac{n^2}{6}}$$
$$F(n) = \left((1 + o(1)) \frac{n}{e^2} \right)^{\frac{n^2}{2}}.$$

Proof

• Entropy of a uniformly distributed random $X \in STS(n)$

$$H(X) = \sum_{X \in STS(n)} -1/|STS(n)| \log(1/|STS(n)|) = \log(|STS(n)|)$$

- Fix an ordering \ll of the vertices and an ordering \prec of the edges such that if $i \ll j$, then $(i,k) \prec (j,l)$ for every k and l
- $X_{i,j}$ is the t such that $\{i,j,t\}$ is a triple in X
- conditional entropy ... $H(X|Y) = \sum_{y} \Pr(Y = y) H(X|Y = y)$
- Chain rule: $H(X) = \sum_{(i,j)} H(X_{i,j}|X_e^{\circ}: e \prec \{i,j\})$

Definitions.

- $A_{i,j}$ is the set of values unavailable for $X_{i,j}$ due to the values of $X_{i',j'}$ with $i' \ll i$
- $\mathcal{B}_{i,j}$ is the set of values unavailable for $X_{i,j}$ due to the values of $X_{i',j'}$ with $(i',j') \prec (i,j)$
- $\mathcal{M}_{i,j} := (V \setminus \{i,j\}) \setminus \mathcal{A}_{i,j}$
- $\mathcal{N}_{i,j} := \mathcal{M}_{i,j} \setminus \mathcal{B}_{i,j}$
- $N_{i,j} := |\mathcal{N}_{i,j}|$ and $M_{i,j} := |\mathcal{M}_{i,j}|$

$$\log(STS(n)) \le \sum_{(i,j)} \mathbb{E}_X[\mathbb{E}_{\prec}[\log(N_{i,j})]]$$

• Fix X, i and j and estimate $\mathbb{E}_{\prec}[\log(N_{i,j})]$

Definitions.

- Let predicate $F_{i,j}$ be true if and only if $i \ll j$, $i \ll X_{i,j}$ and $(i,j) \prec (i,X_{i,j})$
- Let predicate F_{i,j} be true if and only if i ≪ j, i ≪ X_{i,j}
 Let predicate R_{i,p} be true if and only if the position of i in ≪ is p

$$\mathbb{E}_{\prec}[\log(N_{i,j})] = \Pr(F_{i,j}) \mathbb{E}_{\prec|F_{i,j}}[\log(N_{i,j})] = \frac{1}{6} \mathbb{E}_{\prec|F_{i,j}}[\log(N_{i,j})].$$

• First, consider $M_{i,j}$ instead of $N_{i,j}$

$$\mathbb{E}_{\prec |F_{i,j}}[\log(M_{i,j})] \leq \mathbb{E}_{\ll |F'_{i,j}}[\log(M_{i,j})] \leq \mathbb{E}_p[\log(\mathbb{E}_{\ll |R_{i,p},F'_{i,j}}[M_{i,j}])].$$

Lemma 1.

$$\Pr_{\ll |F'_{i,j}}(R_{i,p}) = \frac{\binom{n-p}{2}}{\binom{n}{3}}$$

Lemma 2.

$$\mathbb{E}_{\ll |R_{i,p},F'_{i,j}}[M_{i,j}] = 1 + (n-p-2)\frac{\binom{n-p-3}{2}}{\binom{n-4}{2}}$$

• By combining these lemmas and some calculations

$$\mathbb{E}_{\prec |F_{i,j}}[\log(N_{i,j}) \le \log(n) - 1 + o(1)$$

• Now we will estimate $\mathbb{E}_{\prec |F_{i,i},M_{i,j}=l}[\log(N_{i,j})]$ for every $1 \leq l \leq n$.

Definition.

• Predicate $Q_{i,j,q}$ is true if and only if (i,j) is q'th among the edges (i,\star) under \prec

Lemma 3.

$$\Pr_{\prec |F_{i,j}}(Q_{i,j,p}) = \frac{n-q}{\binom{n}{2}}$$

Lemma 4.

$$\mathbb{E}_{\prec |Q_{i,j,p},F_{i,j},M_{i,j}=l}[N_{i,j}] = 1 + (l-1)\frac{\binom{n-q-1}{2}}{\binom{n-2}{2}}$$

• By combining these lemmas and some calculations

$$\mathbb{E}_{\prec |F_{i,j}, M_{i,j} = l}[\log(N_{i,j})] \le \log(l) - 1 + o(1)$$

• Thus

$$\mathbb{E}_{\prec |F_{i,j}}[\log(N_{i,j})] \le \sum_{l=1}^{n} \Pr_{\prec |F_{i,j}}(M_{i,j} = l)(\log(l) - 1 + o(1)) = \\ \mathbb{E}_{\prec |F_{i,j}}[\log(M_{i,j})] - 1 + o(1) \le \log n - 2 + o(1)$$

• And finally

$$\log(STS(n)) \le \frac{1}{6} \sum_{(i,j)} (\log n - 2 + o(1)) = \frac{\binom{n}{2}}{3} (\log n - 2 + o(1))$$