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Definitions: (S, ®,®) is a (®, ®)-semiring, if (S, ®) is commutative monoid with identity
element 0, (S,®) is a monoid with identity element 1, the ® distributes over @& and 0
is an annihilator with respect to ®. A Boolean semiring is the (B,V, A) semiring, where
B = {False, True}. Apart from semirings, we also consider (min, ®) structure over a set
R, with ®: R x R — Z U {—00,00}. Such a structure is called extended if there exists
Teo € R, such that ro, ®a =a® ro, = 0o for any a € R.

Definition: We generalize matrix multiplication over a (min, ®) structure in a natural
way — we use classical definition and replace plus and times operators with min and ®,
respectively.

Remark: There is an algorithm by Coppersmith and Winograd which multiplies two
n x n matrices over a ring in O(n**"°) time. That is currently the best exponent (denoted
usually as w), although the optimal algorithm is conjectured to be O(n?).

Definition: We say an algorithm on n x n matrices is truly subcubic if its time complexity
is O(n*>%log M) for § > 0, where M is the absolute value of the largest entry.

NEGATIVE TRIANGLE DETECTION PROBLEM over R is defined on a weighted tripartite
graph with parts I, J, K. Edge weights between [ and J are from Z and all other weights
are from R. The problem is to detect whether there is a triangle i € I,j € J,k € K so
that w(i, k) ©w(k, j)+w(i, j) < 0. If we negate all weights between I and .J, the condition
becomes w(i, k) ©® w(k,j) < w(i, ).

NEGATIVE TRIANGLE FINDING PROBLEM over R extends negative triangle detection pro-
blem by listing one or more negative triangles.

Lemma 3.1: Let T'(n) = (n) be a non-decreasing function. If there is a 7'(n) time
algorithm for negative triangle detection over R on a graph G = (I U J U K, E), then
there is an O(T'(n)) algorithm which returns a negative triangle in G if one exists.

Theorem E.1: Suppose there is a truly subcubic algorithm for negative triangle detection
over R. Then there is a truly subcubic algorithm which lists A negative triangles over R
in a graph with at least A triangles, for any A = O(n*7?%), § > 0.

Corollary E.1: There is an algorithm that lists up to A triangles from a given graph G
in time O(A!™/#n%) < O(AM270),

MATRIX PRODUCT VERIFICATION PROBLEM over R is to verify whether for all 7, j € [n]
mingep, (A, k| © Blk, j]) = Cli, j], where A, B,C are given n x n matrices with entries
from R, R, Z, respectively.

Theorem 1.2: Suppose matrix product verification over R can be done in time 7'(n).
Then the negative triangle problem for graphs over R can be solved in O(T'(n)) time.

Definition: Consider a tripartite graph with parts I, J, K. We say a set of triangles
T CIxJx K is IJ-disjoint, if for all (i,5, k), (¢, 7, k") € T, (i,7) # (¢, j") holds.

Lemma 3.2: Let T'(n) = (n) be a non-decreasing function. Given a 7'(n) algorithm for
triangle detection, there is an algorithm L, which outputs a maximal set of I.J-disjoint
triangles in a tripartite graph with distinguished parts (1, .J, K) in O(T(n'/3)n?) time.



Theorem 1.1: Let 7'(n) = Q(n) be a non-decreasing function. Suppose the negative
triangle problem over R in an n-node graph can be solved in T'(n) time. Then the product
of two n x n matrices over R can be performed in O(n*T'(n'/?)log W) time, where W is
the absolute value of the largest integer in the output.

Corollary 1.1: Suppose the negative triangle problem over R is in truly subcubic time.
Then the product of two n x n matrices over R can be computed in truly subcubic time.

Corollary 1.2: Let T'(n) = (n) be a non-decreasing function. Suppose matrix product
verification problem over R is in time 7'(n). Then matrix multiplication over R is in
O(n*T(n'/3)log W) time, where W is the absolute value of the largest integer in the
output, i.e., matrix product verification over R is truly subcubic iff matrix multiplication
over R is truly subcubic.

Corollary 3.3: Suppose matrix distance product verification can be done in O(n*°) time
for some § > 0. Then negative triangle detection is in O(n*~?) time, the distance product
of two matrices with entries in {—W,..., W} can be computed in O(n>%3log W) time,
and all pairs shortest paths for n node graph with edge weights in {0,..., W} can be
solved in O(n*%/3log(nWW)) time.

Theorem 3.1: All-pairs shortest paths in undirected graphs is in O(n*°log® M) time iff
all pairs shortest paths in directed graphs is in O(n3~° log® M) time.

Theorem 3.2: Let T'(n, M) be non-decreasing. Then there is an O(n?) + T(O(n), O(M))
time algorithm for negatwe triangle problem in n node graphs with weights in [—M, M
iff there is an O(n?) + T(O(n), O(M)) algorithm for the metricity problem on [n] su
that all distances are in [—M, M].
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Corollary: All following problems either all have truly subcubic algorithms, or none of
them do:

® The all pairs shortest paths problem on directed graphs.

® The all pairs shortest paths problem on undirected graphs.

® Detecting if a weighted graph has a triangle of negative total edge weight.
e Reporting n*% negative triangles in a graph.

e Checking whether a given matrix defines a metric.

e Matrix multiplication over the (min, +)-semiring.

e Verifying the correctness of a matrix product over the (min, +)-semiring.

Corollary: All following problems either all have truly subcubic combinatorial algorithms,
or none of them do:

® Boolean matrix multiplication.

® Detecting if a graph has a triangle.

® Reporting n*%° triangles in a graph.

e Verifying the correctness of a matrix product over the Boolean semiring.

Without use of algebra, best known Boolean matrix multiplication algorithm runs in
O(n?/1log*>* n).



