Triangle Detection Versus Matrix Multiplication: A Study of Truly Subcubic Reducibility

Virginia Vassilevska Williams, Ryan Williams

Definitions: $(\mathcal{S}, \oplus, \odot)$ is a (\oplus, \odot) -semiring, if (\mathcal{S}, \oplus) is commutative monoid with identity element 0, (\mathcal{S}, \odot) is a monoid with identity element 1, the \odot distributes over \oplus and 0 is an annihilator with respect to \odot . A Boolean semiring is the $(\mathcal{B}, \lor, \land)$ semiring, where $\mathcal{B} = \{False, True\}$. Apart from semirings, we also consider (\min, \odot) structure over a set \mathcal{R} , with $\odot : \mathcal{R} \times \mathcal{R} \to \mathbb{Z} \cup \{-\infty, \infty\}$. Such a structure is called *extended* if there exists $r_{\infty} \in \mathcal{R}$, such that $r_{\infty} \odot a = a \odot r_{\infty} = \infty$ for any $a \in \mathcal{R}$.

Definition: We generalize matrix multiplication over a (\min, \odot) structure in a natural way – we use classical definition and replace plus and times operators with min and \odot , respectively.

Remark: There is an algorithm by Coppersmith and Winograd which multiplies two $n \times n$ matrices over a ring in $\mathcal{O}(n^{2.376})$ time. That is currently the best exponent (denoted usually as ω), although the optimal algorithm is conjectured to be $\tilde{\mathcal{O}}(n^2)$.

Definition: We say an algorithm on $n \times n$ matrices is *truly subcubic* if its time complexity is $\mathcal{O}(n^{3-\delta} \log M)$ for $\delta > 0$, where M is the absolute value of the largest entry.

NEGATIVE TRIANGLE DETECTION PROBLEM over \mathcal{R} is defined on a weighted tripartite graph with parts I, J, K. Edge weights between I and J are from \mathbb{Z} and all other weights are from \mathcal{R} . The problem is to detect whether there is a triangle $i \in I, j \in J, k \in K$ so that $\omega(i,k) \odot w(k,j) + w(i,j) < 0$. If we negate all weights between I and J, the condition becomes $w(i,k) \odot w(k,j) < w(i,j)$.

NEGATIVE TRIANGLE FINDING PROBLEM over \mathcal{R} extends negative triangle detection problem by listing one or more negative triangles.

Lemma 3.1: Let $T(n) = \Omega(n)$ be a non-decreasing function. If there is a T(n) time algorithm for negative triangle detection over \mathcal{R} on a graph $G = (I \cup J \cup K, E)$, then there is an $\mathcal{O}(T(n))$ algorithm which returns a negative triangle in G if one exists.

Theorem E.1: Suppose there is a truly subcubic algorithm for negative triangle detection over \mathcal{R} . Then there is a truly subcubic algorithm which lists Δ negative triangles over \mathcal{R} in a graph with at least Δ triangles, for any $\Delta = \mathcal{O}(n^{3-\delta}), \delta > 0$.

Corollary E.1: There is an algorithm that lists up to Δ triangles from a given graph G in time $\mathcal{O}(\Delta^{1-\omega/3}n^{\omega}) \leq \mathcal{O}(\Delta^{0.208}n^{2.376}).$

MATRIX PRODUCT VERIFICATION PROBLEM over \mathcal{R} is to verify whether for all $i, j \in [n]$ $\min_{k \in [n]}(A[i,k] \odot B[k,j]) = C[i,j]$, where A, B, C are given $n \times n$ matrices with entries from $\mathcal{R}, \mathcal{R}, \mathbb{Z}$, respectively.

Theorem 1.2: Suppose matrix product verification over \mathcal{R} can be done in time T(n). Then the negative triangle problem for graphs over \mathcal{R} can be solved in $\mathcal{O}(T(n))$ time.

Definition: Consider a tripartite graph with parts I, J, K. We say a set of triangles $T \subseteq I \times J \times K$ is IJ-disjoint, if for all $(i, j, k), (i', j', k') \in T, (i, j) \neq (i', j')$ holds.

Lemma 3.2: Let $T(n) = \Omega(n)$ be a non-decreasing function. Given a T(n) algorithm for triangle detection, there is an algorithm L, which outputs a maximal set of IJ-disjoint triangles in a tripartite graph with distinguished parts (I, J, K) in $\mathcal{O}(T(n^{1/3})n^2)$ time.

Theorem 1.1: Let $T(n) = \Omega(n)$ be a non-decreasing function. Suppose the negative triangle problem over \mathcal{R} in an *n*-node graph can be solved in T(n) time. Then the product of two $n \times n$ matrices over \mathcal{R} can be performed in $\mathcal{O}(n^2 T(n^{1/3}) \log W)$ time, where W is the absolute value of the largest integer in the output.

Corollary 1.1: Suppose the negative triangle problem over \mathcal{R} is in truly subcubic time. Then the product of two $n \times n$ matrices over \mathcal{R} can be computed in truly subcubic time.

Corollary 1.2: Let $T(n) = \Omega(n)$ be a non-decreasing function. Suppose matrix product verification problem over \mathcal{R} is in time T(n). Then matrix multiplication over \mathcal{R} is in $\mathcal{O}(n^2T(n^{1/3})\log W)$ time, where W is the absolute value of the largest integer in the output, i.e., matrix product verification over \mathcal{R} is truly subcubic iff matrix multiplication over \mathcal{R} is truly subcubic.

Corollary 3.3: Suppose matrix distance product verification can be done in $\mathcal{O}(n^{3-\delta})$ time for some $\delta > 0$. Then negative triangle detection is in $\mathcal{O}(n^{3-\delta})$ time, the distance product of two matrices with entries in $\{-W, \ldots, W\}$ can be computed in $\mathcal{O}(n^{3-\delta/3} \log W)$ time, and all pairs shortest paths for *n* node graph with edge weights in $\{0, \ldots, W\}$ can be solved in $\mathcal{O}(n^{3-\delta/3} \log(nW))$ time.

Theorem 3.1: All-pairs shortest paths in undirected graphs is in $\tilde{\mathcal{O}}(n^{3-\delta}\log^c M)$ time iff all pairs shortest paths in directed graphs is in $\tilde{\mathcal{O}}(n^{3-\delta}\log^c M)$ time.

Theorem 3.2: Let T(n, M) be non-decreasing. Then there is an $\mathcal{O}(n^2) + T(\mathcal{O}(n), \mathcal{O}(M))$ time algorithm for negative triangle problem in n node graphs with weights in [-M, M] iff there is an $\mathcal{O}(n^2) + T(\mathcal{O}(n), \mathcal{O}(M))$ algorithm for the metricity problem on [n] such that all distances are in [-M, M].

Corollary: All following problems either all have truly subcubic algorithms, or none of them do:

- The all pairs shortest paths problem on directed graphs.
- The all pairs shortest paths problem on undirected graphs.
- Detecting if a weighted graph has a triangle of negative total edge weight.
- Reporting $n^{2.99}$ negative triangles in a graph.
- Checking whether a given matrix defines a metric.
- Matrix multiplication over the (min, +)-semiring.
- Verifying the correctness of a matrix product over the (min, +)-semiring.

Corollary: All following problems either all have truly subcubic *combinatorial* algorithms, or none of them do:

- Boolean matrix multiplication.
- Detecting if a graph has a triangle.
- Reporting $n^{2.99}$ triangles in a graph.
- Verifying the correctness of a matrix product over the Boolean semiring.

Without use of algebra, best known Boolean matrix multiplication algorithm runs in $\mathcal{O}(n^3/\log^{2.25} n)$.