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Virginia Vassilevska Williams, Ryan WilliamsDe�nitions: (S,�,�) is a (�,�)-semiring , if (S,�) is commutative monoid with identity

element 0, (S,�) is a monoid with identity element 1, the � distributes over � and 0
is an annihilator with respect to �. A Boolean semiring is the (B,_,^) semiring, whereB = fFalse,Trueg. Apart from semirings, we also consider (min,�) structure over a setR , with � : R�R ! Z [ f�1,1g. Such a structure is called extended if there exists
r∞ 2 R, such that r∞ � a = a� r∞ =1 for any a 2 R.De�nition: We generalize matrix multiplication over a (min,�) structure in a natural
way – we use classical definition and replace plus and times operators with min and �,
respectively.Remark: There is an algorithm by Coppersmith and Winograd which multiplies two
n�n matrices over a ring in O(n2.376) time. That is currently the best exponent (denoted
usually as ω), although the optimal algorithm is conjectured to be Õ(n2).De�nition:We say an algorithm on n�n matrices is truly subcubic if its time complexity
is O(n3−δ logM) for δ > 0, where M is the absolute value of the largest entry.Negative triangle detetion problem over R is defined on a weighted tripartite
graph with parts I, J,K. Edge weights between I and J are from Z and all other weights
are from R. The problem is to detect whether there is a triangle i 2 I, j 2 J, k 2 K so
that ω(i, k)�w(k, j)+w(i, j) < 0. If we negate all weights between I and J , the condition
becomes w(i, k)� w(k, j) < w(i, j).Negative triangle finding problem over R extends negative triangle detection pro-
blem by listing one or more negative triangles.Lemma 3.1: Let T (n) = Ω(n) be a non-decreasing function. If there is a T (n) time
algorithm for negative triangle detection over R on a graph G = (I [ J [ K,E), then
there is an O(T (n)) algorithm which returns a negative triangle in G if one exists.Theorem E.1: Suppose there is a truly subcubic algorithm for negative triangle detection
over R. Then there is a truly subcubic algorithm which lists ∆ negative triangles over R
in a graph with at least ∆ triangles, for any ∆ = O(n3−δ), δ > 0.Corollary E.1: There is an algorithm that lists up to ∆ triangles from a given graph G
in time O(∆1−ω/3nω) � O(∆0.208n2.376).Matrix produt verifiation problem over R is to verify whether for all i, j 2 [n]
mink∈[n](A[i, k] � B[k, j]) = C[i, j], where A,B,C are given n � n matrices with entries
from R,R,Z, respectively.Theorem 1.2: Suppose matrix product verification over R can be done in time T (n).
Then the negative triangle problem for graphs over R can be solved in O(T (n)) time.De�nition: Consider a tripartite graph with parts I, J,K. We say a set of triangles
T � I � J �K is IJ-disjoint , if for all (i, j, k), (i′, j′, k′) 2 T , (i, j) 6= (i′, j′) holds.Lemma 3.2: Let T (n) = Ω(n) be a non-decreasing function. Given a T (n) algorithm for
triangle detection, there is an algorithm L, which outputs a maximal set of IJ-disjoint
triangles in a tripartite graph with distinguished parts (I, J,K) in O(T (n1/3)n2) time.



Theorem 1.1: Let T (n) = Ω(n) be a non-decreasing function. Suppose the negative
triangle problem over R in an n-node graph can be solved in T (n) time. Then the product
of two n� n matrices over R can be performed in O(n2T (n1/3) logW ) time, where W is
the absolute value of the largest integer in the output.Corollary 1.1: Suppose the negative triangle problem over R is in truly subcubic time.
Then the product of two n�n matrices over R can be computed in truly subcubic time.Corollary 1.2: Let T (n) = Ω(n) be a non-decreasing function. Suppose matrix product
verification problem over R is in time T (n). Then matrix multiplication over R is inO(n2T (n1/3) logW ) time, where W is the absolute value of the largest integer in the
output, i.e., matrix product verification over R is truly subcubic iff matrix multiplication
over R is truly subcubic.Corollary 3.3: Suppose matrix distance product verification can be done in O(n3−δ) time
for some δ > 0. Then negative triangle detection is in O(n3−δ) time, the distance product
of two matrices with entries in f�W, . . . ,Wg can be computed in O(n3−δ/3 logW ) time,
and all pairs shortest paths for n node graph with edge weights in f0, . . . ,Wg can be
solved in O(n3−δ/3 log(nW )) time.Theorem 3.1: All-pairs shortest paths in undirected graphs is in Õ(n3−δ logcM) time iff
all pairs shortest paths in directed graphs is in Õ(n3−δ logcM) time.Theorem 3.2: Let T (n,M) be non-decreasing. Then there is an O(n2) + T (O(n),O(M))
time algorithm for negative triangle problem in n node graphs with weights in [�M,M ]
iff there is an O(n2) + T (O(n),O(M)) algorithm for the metricity problem on [n] such
that all distances are in [�M,M ].Corollary: All following problems either all have truly subcubic algorithms, or none of
them do:� The all pairs shortest paths problem on directed graphs.� The all pairs shortest paths problem on undirected graphs.� Detecting if a weighted graph has a triangle of negative total edge weight.� Reporting n2.99 negative triangles in a graph.� Checking whether a given matrix defines a metric.� Matrix multiplication over the (min,+)-semiring.� Verifying the correctness of a matrix product over the (min,+)-semiring.Corollary: All following problems either all have truly subcubic combinatorial algorithms,
or none of them do:� Boolean matrix multiplication.� Detecting if a graph has a triangle.� Reporting n2.99 triangles in a graph.� Verifying the correctness of a matrix product over the Boolean semiring.
Without use of algebra, best known Boolean matrix multiplication algorithm runs inO(n3/ log2.25 n).


