
Ellis-Filmus-Friedgut: Triangle-intersecting fam-

ilies (presented by Honza Hladky)

Motivation from Extremal Combinatorics: On an n-element set X,
find a big family of sets F ⊂ 2X such that for any A,B ∈ F : |A ∩ B| ≥ 17.
The first construction is taking F to be a family of all sets containing fixed
17 elemements of X. This F has size 2n−17. The Erdős-Ko-Rado asserts that
this is optimal.

Gn. . . all graphs on the vertex set {1, . . . , n}. We identify graphs with their
edges set (in particular, |G| is the number of edges), and further view them

as elemements of the group Z(n
2)

2 (the group operation is xor-ing edges).

•a family F ⊂ Gn is triangle-intersecting if G1 ∩ G2 contains a triangle for
each G1, G2 ∈ F
•a family F ⊂ Gn is odd-cycle-intersecting if G1 ∩ G2 contains an odd cycle
for each G1, G2 ∈ F
•a family F ⊂ Gn is triangle-agreeing if G14G2 contains a triangle for each
G1, G2 ∈ F
•a family F ⊂ Gn is odd-cycle-agreeing if G14G2 contains an odd cycle for
each G1, G2 ∈ F

Question (Simonovits-Sós): Construct a big triangle-intersecting family
F ⊂ Gn.
First construction: Take F0 to be all graphs containing the triangle 123;

|F0| = 2(n
2)−3.

Main theorem: F0 above is optimal.
We shall actually prove that F0 is optimal for the problem of finding a big
odd-cycle agreeing family.

To see that the agreement property is not an actual strengthening to the
intersection property we prove:
Lemma (Chung-Frankl-Graham-Shearer): If F ⊂ Gn is an H-agreeing
family then there exists a family F ′ of the same size which is H-intersecting.
Proof: Compression.

Proof of the Main Theorem

We identify sets H ⊂ Gn with their indicator functions H : Gn → {0, 1}.
Observe that F ⊂ Gn is an odd-cycle agreeing family of graphs iff for each

G ∈ F and B bipartite:
G4B 6∈ F . (1)
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Therefore, F ⊂ Gn is odd-cycle agreeing iff it is an independent set in the

Cayley graph on the group Z(n
2)

2 , generated by the set {B : B bipartite}. We

therefore want to get the bound ≤ 2(n
2)−3 on the independence number of

this graph.

Fourier analysis on Z(n
2)

2

Standard basis of the dual group: χS, χS(T ) := (−1)|S∩T |.

We shall be working a lot with functions f :
(
n
2

)
→ R such that their

eigenfunctions are the standard basis. We then write Λ = (λG)G∈Gn for the
spectrum of such functions. Further, Λmin are the G’s with λG minimal.

Continuing the Proof

An operator A : RGn → RGn is an OCC (=odd-cycle Cayley) operator if
(1) its eigenfunctions are the standard basis, (2) for each odd cycle agreeing
family Fn we have F(G) = 1⇒ AF(G) = 0.

Operators AB and AB: For a bipartite graph B ∈ Gn we define
ABf(G) := f(G4B), and for a distribution B on bipartite graphs we de-
fine ABf(G) := EB∼B[f(G4B)].

Lemma 1: AB is an OCC operation with spectrum λR = (−1)|R|E[χB(R)].

Theorem 2 (weighted version of the Hoffman bound): If Λ is an
OCC spectrum with λ0 = 1 and λmin ∈ (−1, 0) then each odd-cycle agreeing
family F satisfies µ(F) ≤ ν := − λmin

1−λmin
.

Lemma 3: For each B ∈ Gn bipartite, let fB be an arbitrary function with
domain being the subgraphs of B. Let B be an arbitrary distribution on
bipartite graphs. Then the following spectrum is gives an OCC operator:

λG := (−1)|G|E[fB(B ∩G)] .

Define qi(G) := P[|G ∩ B| = i], where B is a random uniform complete
bipartite graph (i.e., partition randomly {1, . . . , n} into two classes, and look
at the crossing edges).

Corollary 4 (of Lemma 3): The spectrum
(
λG = (−1)|G|qi(G)

)
G

is a
spectrum of an OCC operator.

Important Lemma: The spectrum

λG = (−1)|G|
(
q0(G)− 5

7
q1(G)− 1

7
q2(G) +

3

28
q3(G)

)
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is a spectrum of an OCC operator (this is easy) and has the following eige-
navalues:

• λ0 = 1,

• λmin = −1
7

Observe that the Main Theorem follows from Theorem 2 and the Impor-
tant Lemma.

Proof of the Important Lemma

probability generating function QG(X) :=
∑

k≥0 qkX
k.

graph H.
Lemma A: Let G be an k-vertex graph. Then

1. q0(G) = 2#components−k,

2. q1(G) = #bridges× q0(G),

3. if G contains a vertex of odd degree, then: qk ≤ 1/2 for each k ≥ 0,

4. for any odd k, qk(G) ≤ 1/2,

5. q2(G) ≤ 3/4.

Lemma B: We have q0 = 1, q0(K2) = 1/2 and q0(H) ≤ 1/4 for other graphs.
Lemma C: If m = 0 and |G| is odd then q0(G) ≤ 1/16, or G is a triangle,
or a K−4 .
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