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Planarity game
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Untangling problem

Given: a straight-line drawing of a planar graph G
A move: shifting a vertex to a new position

(the incident edges stay straight)
Goal: eliminate all edge crossings

Score: the number of vertices left fixed

fix(G) = the score that can always be gained
(whatever drawing of G is given)
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Example

Theorem (Pach and Tardos 02, Cibulka 10).

2−5/3n2/3 − O(n1/3) ≤ fix(Cn) ≤ O((n log n)2/3)
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Bounds

A general lower bound

fix(G) ≥ (n/3)1/4 for all G (Bose et al. 09)

Upper bounds

fix(G) = O((n log n)2/3) for all 3-connected G
fix(G) = O(

√
n(log n)3/2) for all G with logarithmic maximum degree

and diameter (Cibulka 10)

fix(G) = O(
√

n) for some G, even acyclic
(Bose et al. 09, Goaoc-Kratochv́ıl-et al. 09, Kang et al. 11)
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Lower bounds for classes of graphs

fix(G) ≥
p

n/2 for all trees
(Bose et al. 09, Goaoc-Kratochv́ıl-et al. 09)

and, more generally, for all outerplanar graphs
(Goaoc-Kratochv́ıl-et al. 09)

fix(G) ≥
p

n/30 for all G of tree-width at most 2 (this talk)
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A working tool: Free collinear sets

Definition. Let G = (V, E) be a planar graph. Let π : V → R
2 be

a crossing-free drawing of G and ℓ be a line. A set S ⊂ π(V ) ∩ ℓ
is called free if, whenever we displace the vertices in S along ℓ
without violating their order (thereby introducing edge crossings),
we are able to untangle the modified drawing by only moving the
vertices in π(V ) \ S. By ṽ(G) we denote the largest size of a free
collinear set maximized over all drawings of G.

Theorem. fix (G) ≥
p

ṽ(G).
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Proof (sketch)

Let λ : V → R
2 be crossing-free, S ⊂ V , (k−1)2 < |S| ≤ k2, and λ(S)

be free. Given an arbitrary π : V → R
2, we can untangle it with k

vertices fixed.

Step 1. Make π 1-dimensional: choose a coordinate system (x, y)
so that π(V ) is between y = 0 and y = 1, and projection px is
injective on π(V ). By Erdős-Szekeres, there is a subset S′ ⊂ S of
k points appearing in pxπ and λ in the same order.

Step 2. Turn back to 2D: Consider a (crossing-free) modification
λ′ of λ such that λ(v) = pxπ(v) for all v ∈ S′ (possible because λ(S)
is free).

Step 3. Make a small perturbation of λ′ (still crossing-free):

λ′′(v) =

(

(pxπ(v), ǫpyπ(v)) if v ∈ S′,

λ′(v) otherwise.

Step 4. Apply linear transformation a(x, y) = (x, ǫ−1y). Then aλ′′ is
a crossing-free drawing of G such that aλ′′(v) = π(v) for all v ∈ S′.
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Application to outerplanar graphs

If G is outerplanar, then fix(G) ≥
p

n/2 because ṽ(G) ≥ n/2.

In a track drawing every vertex lies on one of parallel lines, called
tracks, and every edge either lies on one of the tracks or connects
vertices lying on two consecutive tracks.

Lemma (Felsner, Liotta, and Wismath 03).
Outerplanar graphs are track drawable.
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Application to outerplanar graphs

Key observation:

All odd tracks or all even tracks can be drawn on the same line.

The resulting collinear set is free!
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Application to graphs of tree-width 2

Definition. A triangle is a 2-tree. If we connect a new vertex to
two adjacent vertices of a 2-tree, we obtain a 2-tree.

Known fact. Graphs of tree-width 2 are exactly subgraphs of
2-trees.

Therefore, it suffices to show that every 2-tree has a drawing with
a large free set.
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Application to graphs of tree-width 2

Call a drawing of a 2-tree folded if for any two triangles that share
an edge, one contains the other.

Lemma 1. Every collinear set of vertices in a folded drawing is
free.

Lemma 2. Every 2-tree has a folded drawing with at least n/30
collinear vertices.
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Our second contribution

Let v̄(G) denote the number of collinear vertices maximized over
all crossing-free drawings of G.

We show that for some planar graphs not only ṽ(G), but even v̄(G)
is small.
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Allocation problem

Given a planar graph G on n vertices and
an n-point set X in the plane

Draw G without egde-crossings with as
many vertices as possible in X

fitX(G) = the optimum

Gritzmann et al. 91: fitX(G) = n for all outerplanar G and all X
in general position. But if G is not outerplanar, then fitX(G) < n
for any X in convex position.

Gimenez, Flajolet, Noy: If X is in convex position, then
fitX(G) < n for almost all planar G.

Let fit(G) = minX fitX(G). Note that

q

ṽ(G) ≤ fix(G) ≤ fit(G) ≤ v̄(G).
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An upper bound

Theorem. There are triangulations with v̄(G) = o(n0.99).

Given a triangulation G, define G2 as follows: draw G and
triangulate each face by a copy of G. Iterating, we obtain G3,
G4, . . . .
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Proof

Let f̄(G) be the maximum number of faces in some straight-line
drawing of G whose interiors can be cut by a line.

Lemma 1. v̄(Gk) < const · v(Gk)α with α =
log(f̄(G) − 1)

log(f(G) − 1)
, where

f(G) = 2 v(G) − 4 is the number of faces of G.

Lemma 2. f̄(G) ≤ circ(G∗), the maximum cycle length in the dual
of G.

Lemma 3 (Grünbaum, Walther 73). There are triangulations
G with circ(G∗) so small that this gives us α arbitrarily close to
log 26
log 27

= 0.988.

16



Further questions

1. How far or close are ṽ(G) and v̄(G)?

2. We constructed examples of graphs with ṽ(G) ≤ v̄(G) ≤ O(nσ)
for a graph-theoretic constant σ, for which it is known that 0.69 <
σ < 0.99. Are there graphs with v̄(G) = O(

√
n)? If so, this would be

a qualitative strengthening of the bound fix(G) = O(
√

n). Are there
graphs with, at least, ṽ(G) = O(

√
n)? If not, this would improve

the bound fix(G) = Ω(n1/4).

3. We proved that ṽ(G) ≥ n/30 for any G with tree-width 2. For
which other classes of planar graphs do we have ṽ(G) = Ω(n) or,
at least, v̄(G) = Ω(n)?

4. fit(G) = v̄(G)?

5. Let fit∨(G) = minX fitX(G), where the minimization goes over all
X in general position. Extend our upper bound fit(G) = O(n0.99) to
fit∨(G) = o(n) (for infinitely many G).
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Thank you!
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