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INDEPENDENT SET

An independent set in a graph is a set of vertices such that no two
vertices in this set are adjacent

A maximum independent set is an independent set of maximum
cardinality/size

α(G) denotes the cardinality of a maximum independent set of G

We consider only graphs of maximum degree ≤ 3

3 / 12



INDEPENDENT SET
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Combinatorial lower bounds

Brook’s Theorem (1960s) states that every K4-free graph of
maximum degree ≤ 3 is 3-colorable
Therefore, every K4-free graph G of maximum degree at most 3
has an independent set of size ≥ n(G)/3, where n(G) is the
number of vertices in G
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Combinatorial lower bounds

Can this combinatorial lower bound be improved?

Clearly triangles pose a direct obstacle

If every vertex in the graph appears in a triangle then the lower
bound is tight
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Combinatorial lower bounds

Can we improve the n(G)/3 lower bound if G contains some
nontriangle vertices?

Let nt(G) be the number of nontriangle vertices in G

To benefit from the presence of nontriangle vertices, we need a
lower bound of the form:

α(G) ≥ n(G)/3 + nt(G)/c for some constant c > 1
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Combinatorial lower bounds

Such result is not possible, as illustrated by the following graphs:

Can we exclude certain subgraphs to make such a result
possible?
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A Tight Combinatorial Result

Theorem
Let G be a graph that excludes the following graphs as subgraphs then
α(G) ≥ n(G)/3 + nt(G)/42
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A Tight Combinatorial Result

This lower bound is tight because 5n(G)/14 = n(G)/3 + nt(G)/42
is a tight bound on the independence number of triangle-free
graphs of maximum degree ≤ 3

We call the three graphs the obstacle graphs

There are several combinatorial result of a similar nature on the
independence number of graphs of maximum degree ≤ 3

This result is orthogonal to them
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The Proof

We need to prove the following theorem:

Theorem
Let G be a graph that excludes the 3 obstacle graphs as subgraphs
then α(G) ≥ n(G)/3 + nt(G)/42
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The Proof

We use discharging coupled with amortized analysis

The proof is broken into three phases

In each phase we apply a sequence of operations to simplify the
structure of the graph further

We present each of the three phases next
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Phase-I

We apply operations that remove some triangles from G to obtain
a graph G1 in which every triangle is contained in a special
structure that we call a steeple

None of these operations decreases the number of nontriangle
vertices in the graph or introduces triangles

Each of these operation guarantees that one vertex from every
removed triangle can be added to the independent set of G

That is, the independence number of the graph to which the
operation is applied is at least as large as that of the resulting
graph, plus one third the number of vertices removed by the
operation
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Phase-I

The operations in this phase remove all paths/cycles of triangles

Below is an example of an operation that removes a path of
triangle in certain situations
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Phase-I

Consider the following path of triangles:
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Phase-I

We apply the following operation:
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Phase-I

At the end of Phase-I every triangle is contained in one of the following
two subgraphs called steeples:

Type-I Steeple Type-II Steeple
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Phase-II

We apply more operations to G1 to simplify its structure further

We make the steeples in the resulting graph G2, and hence the
triangles, farther apart

Each of these operations removes a subgraph H from G1

satisfying the local-ratio property: An independent set SH of H of
size at least n(H)/3 + nt(H)/42 can be added to any independent
set of the resulting graph
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Phase-II

Examples:

Op.: n(H) = 8, Op.: n(H) = 17,

nt(H) = 5, |SH | = 3. nt(H) = 11, |SH | = 6.

Op.: n(H) = 16, Op.: n(H) = 20,

nt(H) = 10, |SH | = 6. nt(H) = 14, |SH | = 7.
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Phase-III

Let G2 be the resulting graph after the second phase

It suffices to show that α(G2) ≥ n(G2)/3 + nt(G2)/42

We apply more operations to G2 to remove all remaining triangles

The removed subgraphs do not satisfy the local-ratio property

We use a charging argument and amortized analysis to measure
the impact of each of these operations on the resulting graph

Our goal is to show that:
α(G2) ≥ (23n(G2)− 6e(G2) + nt(G2))/42
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Phase-III

A block of a graph is called difficult [Harant et al.] if it is isomorphic
to one of the following four graphs

A connected graph is called bad [Harant et al.] if every block of the
graph is either a difficult block or an edge between two difficult
blocks
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Phase-III

Lemma
A triangle-free graph G′ that does not contain bad components
satisfies α(G′) ≥ (4n(G′)− e(G′))/7 = (23n(G′)− 6e(G′) + nt(G′))/42

After phase-II G2 does not contain bad components

For a subgraph H let e+(H) be the number of edges with at least
one endpoint in H

Call a vertex in H internal if all its neighbors are in H
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Phase-III

It suffices to show that:
1 Each operation removes a subgraph H such that there exists an

independent set consisting of internal vertices in H of size at least
(23n(H) − 6e+(H) + nt(H))/42; and

2 the subgraph resulting from G2 at the end of these operations is
triangle-free and contains no bad components

It will follow by additivity (using the above lemma) that:

α(G2) ≥ (23n(G2)− 6e(G2) + nt(G2))/42

≥ n(G2)/3 + nt(G2)/42
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Phase-III

For a subgraph H let
φ(H) = |SH | − (23n(H)− 6e+(H) + nt(H))/42, where SH is a
maximum independent set consisting of internal vertices in H

We would like to show that each introduced operation that
removes a subgraph H satisfies φ(H) ≥ 0

This will be the case for most of the operations that we apply
except few
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Phase-III

We use amortized analysis: we show that each time one of these
few operations applies, the “deficit" in the function φ caused by
this operation can be “compensated for" by operations that must
have occurred earlier in this phase

For each operation that removes a subgraph H, we introduce a
parameter c(H), where c(H) is the debit of operation H meant to
possibly pay off the deficit of some later operations

Let s = 1/14
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Phase-III

For each fringe edge e = (u, v) to H between a boundary vertex u
of H and a vertex v ∈ G2 −V (H), we define a debit c(e) = s/2 if v
is a neighbor of some top vertex in a type-II steeple, and
c(e) = s/4 otherwise

We define c(H) to be the sum of c(e) over all fringe edges to H

Finally, we extend the function φ(H) and define the function
Φ(H) = φ(H)− c(H)

It suffices to show that the sum of Φ(H) over all removed
subgraphs H is positive
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Phase-III

Example of a type-I steeple operation: no deficit

B

e+(H) ≥ 15

nt(H) ≤ 7

n(H) ≤ 10

c(H) ≤ s

4

φ−(B) = − 1

7
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Phase-III

Example of a type-II steeple operation: deficit is s which is
compensated for by the lack of the two edges incident to the neighbors
of the top vertices in the steeple

e+(H) ≥ 15

nt(H) ≤ 8

n(H) ≤ 11

c(H) = 0
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Kernelization

A parameterized problem is a set of instances (x , k) where x is
the input and k is the parameter
A parameterized problem has a kernel (or is kernelizable) if there
exists a polynomial-time algorithm that for every instance (x , k)
outputs an instance (x ′, k ′) such that:

i. (x , k) and (x ′, k ′) are equivalent
ii. |x ′| ≤ g(k) for some function g
iii. k ′ ≤ g(k)

Kernel
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Kernelization

IS-3: Given a graph G of maximum degree at most 3 and k , does
G have an independent set of size ≥ k

Brook’s Theorem states that every K4-free graph G of maximum
degree ≤ 3 has an independent set of size ≥ n(G)/3

Brook’s theorem implies that IS-3 has a kernel of size 3k : remove
the K4’s

Can we improve the 3k upper bound for IS-3?
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Kernelization

One possible approach is to preprocess the graph so that to
guarantee the presence of nontriangle vertices

We can then use the presented combinatorial result
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Kernelization algorithm for IS-3: Prelude

Reduction Rule
Remove the obstacle graphs
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Kernelization algorithm for IS-3: Prelude
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Kernelization algorithm for IS-3: Prelude

Reduction Rule
Remove every triangle with a degree-2 vertex
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Kernelization algorithm for IS-3: Prelude

Reduction Rule
Break adjacent triangles

a

b
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Kernelization algorithm for IS-3: Prelude

Reduction Rule
Remove cycles of triangles
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Kernelization algorithm for IS-3: Prelude

Let n(G) be the number of vertices in G, and nt(G) be the number
of nontriangle vertices in G

Suppose that none of the three previous reduction rules applies to
G

Theorem
The number of nontriangle vertices nt(G) satisfies nt(G) ≥ n(G)/10
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Kernelization algorithm for IS-3: Prelude

Call a graph reduced if none of the above reductions applies to it

We have the following theorem:

Theorem
Let G be a reduced graph then α(G) ≥ 141n(G)/420

Proof.
This follows from the combinatorial lower bound
α(G) ≥ n(G)/3 + nt(G)/42 after noting that nt(G) ≥ n/10
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Kernelization algorithm for IS-3: Prelude

Corollary

IS-3 has a kernel of size 420k/141 that is computable in O(k) time

Corollary

Unless P=NP, VC-3 does not have a kernel of size smaller than
420k/279 ≈ 1.505
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Concluding Remarks

Concrete open problems: Can we improve the upper bound on the
kernel size for (planar) VC-3 or IS-3?

Can we improve the lower bound on the kernel size for VC-3?

Duality does not seem to be a very promising technique for
tightening this gap
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