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Definition: Path-distance-width (1 of 2)

Definition (Distance)
The distance between two
vertices u and v in G is
denoted by dG(u, v). The
distance between S ⊆ V(G)
and v ∈ V(G) in G is defined
as dG(S, v) = minu∈S dG(u, v).

Definition (Distance structure)

The distance structure of G
rooted at S, denoted by
DG(S), is (L1, L2, . . . , Lt) s.t.⋃

1≤i≤t Li = V(G) and

Li = {v ∈ V(G) |
dG(S, v) = i − 1}.
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Definition: Path-distance-width (2 of 2)

Definition (Path-distance-width)

Let G be a graph, S ⊆ V(G), and DG(S) = (L1, L2, . . . , Lt).
The path-distance-width of S in G, denoted by pdwG(S), is
maxi |Li |. The path-distance-width of G is defined as

pdw(G) = min
S⊆V(G)

pdwG(S).

Path-distance-width is defined for connected graphs only.
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Relations to other important graph parameters

Theorem (Corollary to some known results)

For any connected graph G,
treewidth(G) ≤ pathwidth(G) ≤ bandwidth(G) < 2 · pdw(G).

The “bounded pdw” constraint is very strong.

One can use very simple structures of bounded pdw graphs.

Even if a problem is NP-hard for graphs of bounded (treewidth
| pathwidth | bandwidth), it may be in P for graphs of bounded
path-distance-width.

One can use very simple structures of bounded pdw graphs.
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Known results (1 of 2)

The complexity for Graph Isomorphism is not known: in P or
NP-hard?

Theorem (Bodlaender 1990)

If G and H have treewidth at most k , then Graph Isomorphism of G
and H can be solved in O(nk+4.5) time.

Theorem (Yamazaki et al. 1999)

If G and H have path-distance-width at most k , then Graph
Isomorphism of G and H can be solved in O(nk+1) time.
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Known results (2 of 2)

Theorem (Yamazaki et al. 1999)

Given a tree T and an integer k , deciding whether pdw(T) ≤ k is
NP-complete.

Theorem (Yamazaki 2001)

It is NP-hard to approximate pdw of a tree within a factor 4/3 − ε
for any ε > 0.

Tree-like structures do not help.

How about graphs with chain-like (or path-like) structures?
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Related results (Bandwidth of chain-like graphs)

Theorem (Sprague 1994)

The bandwidth of an interval graph can be determined in
O(n log n) time.

Theorem (Kloks et al. 1999)

Given an AT-free graph G and an integer k , deciding whether
bandwidth(G) ≤ k is NP-complete. The bandwidth of an AT-free
graph can be approximated within a factor 2 in O(mn) time.

Theorem (Golovach et al. 2009)

k-bandwidth for AT-free graphs is in FPT.
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Our results

Theorem
The path-distance-width of a k-cocomparability graph can be
approximated within a factor 2k + 1 in O(mn) time.

Theorem
The path-distance-width of an AT-free graph can be approximated
within a factor 3 in O(m + n) time.

Theorem
The problem to determine the path-distance-width of a cobipartite
graph is NP-hard.

Cobipartite ⊂ AT-free ⊂ k -cocomparability (k ≥ 2).
n: the number of vertices. m: the number of edges.
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Summary of results

k-cocomparability (k ≥ 2): 2k + 1

AT-free: 3

Cocomparability: 3 AT-free ∩ claw-free: 3

Interval: 3

Proper interval: 2 Cobipartite: 2

Cochain

Superclass: approx. ratio

Subclass: approx. ratio

NP-hard

Unknown

P

∗

∗

∗

∗

∗
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Definition: AT-free graphs

AT
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Definition (Asteroidal Triple (AT))

An asteroidal triple (AT) is a vertex triple
such that there is a path between any two
of them avoiding the neighbors of the third.

Definition (AT-free graphs)

A graph is AT-free if it contains no AT.

Roughly speaking, AT-free graphs have
chain-like structures. Interval graphs and
permutation graphs are AT-free.
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Property of AT-free graphs

(u,w) is a dominating pair
if the following holds ∀v

u w

N(v)

v

Definition (Dominating pair)

A vertex pair (u, v) in G is a dominating
pair of G if the vertex set of every u–v path
in G is a dominating set of G.

Theorem (Corneil et al. 1995 & 1999)

Every connected AT-free graph has a
dominating pair. A dominating pair of a
connected AT-free graph can be found in
linear time.

(∗) “AT-free” , “having a dominating pair”.
Consider the wheel graph Wn for n ≥ 7.
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Key lemma

For S ⊆ V(G), diamG(S) = maxu,v∈S dG(u, v).

Lemma

Let S ⊆ V(G). Then, pdw(G) ≥ |S |/(diamG(S) + 1).

Proof.
For any distance structure of G, S can intersect at most
diamG(S) + 1 levels. �

Corollary

Let DS(G) = (S = X1, . . . ,Xt) be a distance structure of G. If
diamG(Xi) ≤ k for 1 ≤ i ≤ t , then pdwG(S) ≤ (k + 1)pdw(G).
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Bounding the diameter of each level

(u, v): a dominating pair.

D({u}) = (X1, . . . ,Xt).

x, y: vertices in Xi .

(p1, . . . , p`): a shortest u–v path.

Lemma

diamG(Xi) ≤ 2 for 1 ≤ i ≤ t

Proof.

Figure shows dG(x, y) ≤ 2. �

v

u

qi−1

pi+1

Case 3Case 2Case 1

Xi−1

Xi

Xi+1

Xi−1

Xi

Xi+1

Xi−1

Xi

Xi+1

pi

pi−1

pi+1

pi

pi−1

pi+1

pi

pi−1qi−1

x= qi x= qi yxyy

v

u

v

u

19 / 24



Introduction Approximation for AT-free graphs Concluding remarks

Proof

Theorem
The path-distance-width of an AT-free graph can be approximated
within a factor 3 in O(m + n) time.

Proof.
1 Find a dominating pair (u, v) in O(m + n) time.
2 Construct the distance structure D({u}) in O(m + n) time.
3 Output the maximum size of the levels of D({u}) in O(n) time.

Since each level of D({u}) has diameter at most two,

pdwG({u}) ≤ 3 · pdw(G).

This completes the proof. �
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Note on the approximation factor 3

The factor 3 is best possible even for interval graphs (and thus for
AT-free graphs) in the following sense.
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c

The friendship graph F4 and

its interval representation.

Theorem
The approximation ratio 3 cannot be
improved if we select only one vertex as
the initial set.

Proof.
Let A be the algorithm examining all
distance structures rooted at a single
vertex. For friendship graphs, the
approximation ratio of A is 3 − o(1). Since
friendship graphs are interval graphs, the
theorem holds. �
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Conclusions

k-cocomparability (k ≥ 2): 2k + 1

AT-free: 3

Cocomparability: 3 AT-free ∩ claw-free: 3

Interval: 3

Proper interval: 2 Cobipartite: 2

Cochain

Superclass: approx. ratio

Subclass: approx. ratio

NP-hard
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Open problems

The complexity for (proper) interval graphs.

Approximation for trees or chordal graphs.
(Recall: better than 4/3-approximation is NP-hard.)

When parametrized by path-distance-width, is Graph
Isomorphism FPT?
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