Exact Algorithms for Kayles

H. L. BODLAENDER¹ <u>D. KRATSCH²</u>

¹Utrecht University 3508 TB Utrecht The Netherlands

²LITA Université Paul Verlaine - Metz France

Workshop on Graph-Theoretic Concepts in Computer Science Tepla, Czech Republic, june 21-24, 2011

I. Introduction

KAYLES : The Game

Rules

- two player game played on an undirected graph G = (V, E)
- players select alternatingly a vertex from G
- a player may never choose a vertex that is adjacent or equal to an already chosen vertex
- the last player that can select a vertex wins the game

Alternative descriptions

- players build together an independent set in G and the player turning the independent set into a maximal independent set wins the game
- the chosen vertex and its neighbors are removed and a player wins when his move empties the graph.

Player 2 wins!

Player 2 wins!

Player 1 wins!

Player 1 wins!

KAYLES : The PSPACE-complete Problem

KAYLES

- INPUT : an undirected graph G = (V, E)
- QUESTION : Has player 1 a winning strategy when the game is played on graph G ?

[Schaefer 1978]

The problem Kayles is PSPACE-complet.

Known Results

Polynomial Time Algorithms

- on graphs of bounded asteroidal number (including AT-free graphs, interval graphs, cocomparability graphs and cographs) [Bodlaender Kratsch 2002]
- on stars of bounded degree [Fleischer Trippen 2004]
- on paths [Guignard Sopena 2009] (variants of KAYLES)

Algorithm solving KAYLES in $O^*(2^n)$ time :

"tabulate for each induced subgraph of G which player has a winning strategy from that position"

Can we say more about the complexity of KAYLES?

NP vs. PSPACE

- $\blacktriangleright \mathsf{NP} \subseteq \mathsf{PSPACE}$
- every NP-complete problem can be solved in polynomial space
- polynomial-time hierarchy

What is the Time Complexity of KAYLES?

- Could it be that there is a PSPACE-complete problem X and a NP-complete problem Y such that X can be solved faster than Y?
- Could it be that there is an algorithm solving KAYLES of a running time faster than the best known one for SAT ?
- Could it be that the best algorithm for KAYLES is faster than the best algorithm (not yet known) for SAT ?

II. Our Results

K-sets

Let $S \subseteq V$. We denote by N[S] the set of all vertices v satisfying

- either $v \in S$
- or v has a neighbor in S.

Fundamental Notion

A nonempty set of vertices $W \subseteq V$ is a K-set in a graph G = (V, E), if G[W] is connected and there exists an independent set X such that W = V - N[X].

Hence a K-set is a connected component of the graph that remains after the players selected an independent set X; thereby removing each chosen vertex and its neighbors.

Maximum Number of K-sets : Upper Bounds

Upper bound on graphs

• A graph G on n vertices has (at most) $O(1.6052^n)$ K-sets.

Upper Bound on trees

• A tree on *n* nodes has at most $n \cdot 3^{n/3}$ K-sets.

Exact algorithms

The running time of our exact algorithm solving K_{AYLES} is bounded by a polynomial factor times the number of K-sets in G.

KAYLES

► KAYLES can be solved in time O(1.6052ⁿ) for graphs on n vertices.

KAYLES on trees

► KAYLES can be solved in time O(1.4423ⁿ) for trees on n nodes.

Maximum Number of K-sets : Lower Bounds

Lower bound on graphs

For any t ≥ 1, there is a graph on n = 3t vertices with at least 3^{n/3} different K-sets.

Lower Bound on trees

For any t ≥ 1, there is a tree on n = 3t + 1 nodes with at least 3^{(n-1)/3} different K-sets.

Consequence

- ► large gap between upper bound O(1.6052ⁿ) and lower bound Ω(1.4422ⁿ) for graphs
- tight bounds (up to polynomial factor) O(1.4423ⁿ) resp.
 Ω(1.4422ⁿ) for trees

III. Sprague-Grundy Theory

For a good introduction to Sprague-Grundy theory we refer to :

BERLEKAMP, E. R., CONWAY, J. H., AND GUY, R. K. Winning Ways for your mathematical plays, Vol. 1 : Games in General. Academic Press, 1982.

CONWAY, J. H. On Numbers and Games. Academic Press, 1976.

Sprague-Grundy Theory II

Sprague-Grundy theory can be applied to KAYLES since ...

... KAYLES is ...

- impartial
- deterministic
- finite
- full-information
- two player game
- 'last player wins rule'

Sprague-Grundy Theory III

A nimber is an integer belonging to $\mathbf{N} = \{0, 1, 2, ...\}$. For a finite set of nimbers $S \subseteq \mathbf{N}$, define the minimum excluded nimber of S as $mex(S) = min\{i \in \mathbf{N} \mid i \notin S\}$.

Assigning nimbers to positions (of KAYLES)

- no move possible (and player who must move looses) in position p : nb(p) := 0
- otherwise nb(p) is the minimum excluded nimber of the set of nimbers of positions that can be reached in one move

THEOREM [Berlekamp et al. 1982, Conway 1976]

There is a winning strategy for player 1 from a position, if and only if the nimber of that position is at least 1.

Sprague-Grundy Theory IV

The sum of two games (of KAYLES) \mathcal{G}_1 and \mathcal{G}_2 denoted $\mathcal{G}_1 + \mathcal{G}_2$ is the game where a move consists of choosing \mathcal{G}_1 or \mathcal{G}_2 and then making a move in that game. A player that cannot make a move in \mathcal{G}_1 nor in \mathcal{G}_2 looses the game $\mathcal{G}_1 + \mathcal{G}_2$.

Binary XOR operation is denoted by \oplus , i.e., for nimbers i_1 , i_2 , $i_1 \oplus i_2 = \sum \{2^j \mid (\lfloor i_1/2^j \rfloor \text{ is odd}) \Leftrightarrow (\lfloor i_2/2^j \rfloor \text{ is even})\}.$

THEOREM [Berlekamp et al. 1982, Conway 1976]

Let p_1 be a position in \mathcal{G}_1 , p_2 a position in \mathcal{G}_2 . The nimber of position (p_1, p_2) in $\mathcal{G}_1 + \mathcal{G}_2$ equals $nb((p_1, p_2)) = nb(p_1) \oplus nb(p_2)$.

Consequence for KAYLES : For disjoint graphs G_1 and G_2 (possibly disconnected) : $nb(G_1 \cup G_2) = nb(G_1) \oplus nb(G_2)$

IV. An Upper Bound on the Number of K-sets in Graphs Combinatorial Upper Bound

THEOREM :

The number of K-sets in an *n*-vertex graph is $O(1.6052^n)$.

▶ Main fact in time analysis of exact algorithm for KAYLES

How to establish the upper bound?

- branching algorithm generating all K-sets (possibly also non connected sets) of input graph
- upper bound the number of leaves of the search tree (corresponding to an execution)
- using linear recurrences, branching vectors, a measure etc. to analyse branching rules
- tailoring algorithm (branching and reduction rules) and measure to achieve best possible upper bound

Approach

non-trivial K-set

- A K-set is nontrivial, if it has at least three vertices; otherwise we call it trivial.
- number of trivial K-sets is at most |V| + |E|

via branching

- construct an independent set X
- construct a non-trivial K-set W containing v₀
- select a vertex to be in X
- forbid a vertex to be in X
- remove a vertex from the graph

Colors and weights

Four types of vertices

- White or free vertices. Weight 1
- Red vertices. Not to be selected into the independent set X. Might be removed later. Weight α = 0.5685
- Green vertices. Will never be removed. Belongs to (final) W.
 Weight 0
- ► **Removed vertices**. Not existing anymore. Removed by being selected into *X* or by being neighbor of a vertex in *X*.

Measure

- ► an instance is a (typically connected) induced subgraph G' of the input graph G with vertices of color white, red or green
- the measure $\mu(G')$ is the total weight of all vertices

Reduction Rules

START : Fix an arbitrary vertex v_0 color it green. GOAL : Generate all non-trivial K-sets containing v_0

- Rule 1 : If a red vertex v has no white neighbor, we can color it green. This is valid, as we can no longer place a neighbor of v in X.
- Rule 2 : If a green vertex v has a white neighbor w, we can color w red. This is valid, as placing w in X would remove v, which we are not allowed by the green color of v.
- ► Rule 3 : If G has more than one connected component, then remove all vertices from components that do not contain the green vertex v₀.

Branching Rules

Main type of branching rule : vertex branching

- $v \in V$ a white vertex.
- Case 1 : v is selected into X. Remove N[v]. Measure decreases by the total weight of all white and red vertices in the closed neighborhood of v.
- Case 2 : v is discarded from X. Color v red. Measure decreases by 1 − α.

Case 1 and 2

Case 1 : There is a white vertex v with at least three white neighbors.

- vertex branch on v
- decrease of measure at least 4 for select v
- decrease of measure 1α for discard v
- branching vector $(4, 1 \alpha)$

Case 2 : There is a white vertex v with two white neighbors and at least one red neighbor.

- vertex branch on v
- decrease of measure at least $3 + \alpha$ for select v
- decrease of measure 1α for discard v
- branching vector $(3 + \alpha, 1 \alpha)$

V. The Exact Algorithm

Recursive algorithm using memorization

```
Procedure compute_nimber(G[W]).
if nb(W) already computed then
    return nb(W)
else
    M := \emptyset:
    for all w \in W do
        let Z_1, Z_2, \ldots, Z_r (r \ge 1) be the components of G - N[w];
       nim := 0:
        for i \leftarrow 1 to r do
        | nim := nim \oplus compute_nimber(G[Z_i]);
         M := M \cup \{nim\}
        answer := mex(M);
    nb(W) := answer;
    return answer
```

Algorithm calls procedure compute_nimber with input G = (V, E)Running time : number of K-sets times a polynomial in n

VI. Lower Bounds

Example a lower bound graph with t = 5

Example a lower bound tree with t = 5

VII. Conclusions

Summary of results

- exact algorithm solving PSPACE-complete problem KAYLES
- introduced notion of K-sets
- upper and lower bounds for maximum number of K-sets in n-vertex graphs
- tight bound for the maximum number of K-sets in *n*-node trees

Open Questions

- complexity of KAYLES on trees longstanding open problem
- ► Could there be a subexponential algorithm for KAYLES on trees, say of form O(c^{√n})?
- Is there a polynomial space algorithm solving KAYLES with a running time of O*(2ⁿ)?
- ▶ Find an algorithm with a running time O*(cⁿ) with c < 2 for other PSPACE-complete problems, e.g. combinatorial games or even QUANTIFIED 3-SATISFIABILITY.