
Exact Algorithms for Kayles

H. L. Bodlaender1 D. Kratsch2

1Utrecht University
3508 TB Utrecht
The Netherlands

2LITA
Université Paul Verlaine - Metz

France

Workshop on Graph-Theoretic Concepts in Computer Science
Tepla, Czech Republic, june 21-24, 2011

I. Introduction

KAYLES : The Game

Rules

I two player game played on an undirected graph G = (V ,E)

I players select alternatingly a vertex from G

I a player may never choose a vertex that is adjacent or equal
to an already chosen vertex

I the last player that can select a vertex wins the game

Alternative descriptions

I players build together an independent set in G and the player
turning the independent set into a maximal independent set
wins the game

I the chosen vertex and its neighbors are removed and a player
wins when his move empties the graph.

Playing KAYLES I

a

b

c

d

e

f

g

h

Playing KAYLES I

a

b

1

d

e

f

g

h

Playing KAYLES I

a

b

1

d

e

f

2

h

Player 2 wins !

Playing KAYLES I

a

b

1

d

e

f

2

h

Player 2 wins !

Playing KAYLES II

a

b

c

d

e

f

g

h

Playing KAYLES II

a

b

c

1

e

f

2

h

Playing KAYLES II

a

b

c

1

e

f

g

h

Player 1 wins !

Playing KAYLES II

a

b

c

1

e

f

g

h

Player 1 wins !

KAYLES : The PSPACE-complete Problem

Kayles

I INPUT : an undirected graph G = (V ,E)

I QUESTION : Has player 1 a winning strategy when the game
is played on graph G ?

[Schaefer 1978]

The problem Kayles is PSPACE-complet.

Known Results

Polynomial Time Algorithms

I on graphs of bounded asteroidal number (including AT-free
graphs, interval graphs, cocomparability graphs and cographs)
[Bodlaender Kratsch 2002]

I on stars of bounded degree [Fleischer Trippen 2004]

I on paths [Guignard Sopena 2009] (variants of KAYLES)

Algorithm solving Kayles in O∗(2n) time :

“tabulate for each induced subgraph of G which player has a
winning strategy from that position’ ’

Can we say more about the complexity of Kayles ?

NP vs. PSPACE

I NP ⊆ PSPACE

I every NP-complete problem can be solved in polynomial space

I polynomial-time hierarchy

What is the Time Complexity of Kayles ?

I Could it be that there is a PSPACE-complete problem X and
a NP-complete problem Y such that X can be solved faster
than Y ?

I Could it be that there is an algorithm solving Kayles of a
running time faster than the best known one for SAT ?

I Could it be that the best algorithm for Kayles is faster than
the best algorithm (not yet known) for SAT ?

II. Our Results

K-sets

Let S ⊆ V . We denote by N[S] the set of all vertices v satisfying

I either v ∈ S

I or v has a neighbor in S .

Fundamental Notion
A nonempty set of vertices W ⊆ V is a K-set in a graph
G = (V ,E), if G [W] is connected and there exists an
independent set X such that W = V − N[X].

Hence a K-set is a connected component of the graph that remains
after the players selected an independent set X ; thereby removing
each chosen vertex and its neighbors.

Maximum Number of K-sets : Upper Bounds

Upper bound on graphs

I A graph G on n vertices has (at most) O(1.6052n) K-sets.

Upper Bound on trees

I A tree on n nodes has at most n · 3n/3 K-sets.

Exact algorithms

The running time of our exact algorithm solving Kayles is
bounded by a polynomial factor times the number of K-sets in G .

KAYLES

I Kayles can be solved in time O(1.6052n) for graphs on n
vertices.

KAYLES on trees

I Kayles can be solved in time O(1.4423n) for trees on n
nodes.

Maximum Number of K-sets : Lower Bounds

Lower bound on graphs

I For any t ≥ 1, there is a graph on n = 3t vertices with at
least 3n/3 different K-sets.

Lower Bound on trees

I For any t ≥ 1, there is a tree on n = 3t + 1 nodes with at
least 3(n−1)/3 different K-sets.

Consequence

I large gap between upper bound O(1.6052n) and lower bound
Ω(1.4422n) for graphs

I tight bounds (up to polynomial factor) O(1.4423n) resp.
Ω(1.4422n) for trees

III. Sprague-Grundy Theory

Sprague-Grundy Theory I

For a good introduction to Sprague-Grundy theory we refer to :

Berlekamp, E. R., Conway, J. H., and Guy, R. K.
Winning Ways for your mathematical plays, Vol. 1 : Games in
General. Academic Press, 1982.

Conway, J. H. On Numbers and Games. Academic Press, 1976.

Sprague-Grundy Theory II

Sprague-Grundy theory can be applied to KAYLES since ...

... KAYLES is ...

I impartial

I deterministic

I finite

I full-information

I two player game

I ‘last player wins rule’

Sprague-Grundy Theory III

A nimber is an integer belonging to N = {0, 1, 2, . . .}. For a finite
set of nimbers S ⊆ N, define the minimum excluded nimber of S
as mex(S) = min{i ∈ N | i 6∈ S}.

Assigning nimbers to positions (of KAYLES)

I no move possible (and player who must move looses) in
position p : nb(p) := 0

I otherwise nb(p) is the minimum excluded nimber of the set of
nimbers of positions that can be reached in one move

THEOREM [Berlekamp et al. 1982, Conway 1976]

There is a winning strategy for player 1 from a position, if and only
if the nimber of that position is at least 1.

Sprague-Grundy Theory IV

The sum of two games (of KAYLES) G1 and G2 denoted G1 + G2 is
the game where a move consists of choosing G1 or G2 and then
making a move in that game. A player that cannot make a move in
G1 nor in G2 looses the game G1 + G2.

Binary XOR operation is denoted by ⊕, i.e., for nimbers i1, i2,
i1 ⊕ i2 =

∑
{2j | (bi1/2jc is odd)⇔ (bi2/2jc is even)}.

THEOREM [Berlekamp et al. 1982, Conway 1976]

Let p1 be a position in G1, p2 a position in G2. The nimber of
position (p1, p2) in G1 +G2 equals nb((p1, p2)) = nb(p1)⊕ nb(p2).

Consequence for KAYLES : For disjoint graphs G1 and G2 (possibly
disconnected) : nb(G1 ∪ G2) = nb(G1)⊕ nb(G2)

IV. An Upper Bound on the Number of

K-sets in Graphs

Combinatorial Upper Bound

THEOREM :
The number of K-sets in an n-vertex graph is O(1.6052n).

I Main fact in time analysis of exact algorithm for Kayles

How to establish the upper bound ?

I branching algorithm generating all K-sets (possibly also non
connected sets) of input graph

I upper bound the number of leaves of the search tree
(corresponding to an execution)

I using linear recurrences, branching vectors, a measure etc. to
analyse branching rules

I tailoring algorithm (branching and reduction rules) and
measure to achieve best possible upper bound

Approach

non-trivial K-set

I A K-set is nontrivial, if it has at least three vertices ; otherwise
we call it trivial.

I number of trivial K-sets is at most |V |+ |E |

via branching

I construct an independent set X

I construct a non-trivial K-set W containing v0

I select a vertex to be in X

I forbid a vertex to be in X

I remove a vertex from the graph

Colors and weights

Four types of vertices

I White or free vertices.
Weight 1

I Red vertices. Not to be selected into the independent set X .
Might be removed later.
Weight α = 0.5685

I Green vertices. Will never be removed. Belongs to (final) W .
Weight 0

I Removed vertices. Not existing anymore. Removed by being
selected into X or by being neighbor of a vertex in X .

Measure

I an instance is a (typically connected) induced subgraph G ′ of
the input graph G with vertices of color white, red or green

I the measure µ(G ′) is the total weight of all vertices

Reduction Rules

START : Fix an arbitrary vertex v0 color it green.
GOAL : Generate all non-trivial K-sets containing v0

I Rule 1 : If a red vertex v has no white neighbor, we can color
it green. This is valid, as we can no longer place a neighbor of
v in X .

I Rule 2 : If a green vertex v has a white neighbor w , we can
color w red. This is valid, as placing w in X would remove v ,
which we are not allowed by the green color of v .

I Rule 3 : If G has more than one connected component, then
remove all vertices from components that do not contain the
green vertex v0.

Branching Rules

Main type of branching rule : vertex branching

I v ∈ V a white vertex.

I Case 1 : v is selected into X . Remove N[v]. Measure
decreases by the total weight of all white and red vertices in
the closed neighborhood of v .

I Case 2 : v is discarded from X . Color v red. Measure
decreases by 1− α.

Case 1 and 2

Case 1 : There is a white vertex v with at least three white
neighbors.

I vertex branch on v

I decrease of measure at least 4 for select v

I decrease of measure 1− α for discard v

I branching vector (4, 1− α)

Case 2 : There is a white vertex v with two white neighbors
and at least one red neighbor.

I vertex branch on v

I decrease of measure at least 3 + α for select v

I decrease of measure 1− α for discard v

I branching vector (3 + α, 1− α)

V. The Exact Algorithm

Recursive algorithm using memorization

Procedure compute nimber(G[W]).

if nb(W) already computed then
return nb(W)

else
M := ∅;
for all w ∈W do

let Z1,Z2, . . . ,Zr (r ≥ 1) be the components of G − N[w];
nim := 0;
for i ← 1 to r do

nim := nim ⊕ compute nimber(G [Zi]);
M := M ∪ {nim}

answer := mex(M);

nb(W) := answer ;
return answer

Algorithm calls procedure compute nimber with input G = (V ,E)
Running time : number of K-sets times a polynomial in n

VI. Lower Bounds

Example a lower bound graph with t = 5

Example a lower bound tree with t = 5

VII. Conclusions

Summary of results

I exact algorithm solving PSPACE-complete problem Kayles

I introduced notion of K-sets

I upper and lower bounds for maximum number of K-sets in
n-vertex graphs

I tight bound for the maximum number of K-sets in n-node
trees

Open Questions

I complexity of Kayles on trees longstanding open problem

I Could there be a subexponential algorithm for Kayles on
trees, say of form O(c

√
n) ?

I Is there a polynomial space algorithm solving Kayles with a
running time of O∗(2n) ?

I Find an algorithm with a running time O∗(cn) with c < 2 for
other PSPACE-complete problems, e.g. combinatorial games
or even Quantified 3-Satisfiability.

