The Cinderella game on holes and anti-holes.

Marijke H.L. Bodlaender¹ Cor A.J. Hurkens² Gerhard J. Woeginger²

22 June 2011

¹Department of Information and Computing Sciences, Universiteit Utrecht, The Netherlands ²Department of Mathematics and Computer Science, TIL Findhow

²Department of Mathematics and Computer Science, TU Eindhown The Netherlands , = -2000

Definitions Example game The game on

The game on holes

Introduction

Definitions

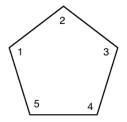
Example game

The game on general graphs

The game on holes

Conjectures

Introduction to the game



Proposed problem for the International Mathematical Olympiad

 We study variant where water arrives in rounds and the game board is an undirected graph

Universiteit Utrecht

Introduction

▲ロト ▲圖 > ▲目 > ▲目 > ● ④ ● ●

The game

- Game played on undirected simple graph G = (V, E)
- Every vertex v contains a bucket
- Every edge $[u, v] \in E$ indicates an incompatibility
- In every round the Stepmother distributes a liter of water in the buckets
- Cinderella empties the buckets in an independent set
- Stepmother tries to reach an overflow
- Cinderella wants to avoid an overflow

Introduction

Definitions

Example game

The game on general graphs

The game on holes

Conjectures

Some definitions and notation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- bucket'(G): infimum of all bucket sizes Cinderella needs to win
- bucket(G) : bucket'(G) 1 is the *bucket number* of G
- GREEDY: empty maximum weight independent set every turn
- g-bucket(G): bucket number of G when Cinderella uses a GREEDY strategy

Introduction

Definitions

Example game

The game on general graphs

The game on holes

Conjectures

5

Definitions

x = (x_v) v ∈ V where x_v is the contents of bucket v at the start of a round

•
$$x(S) = \sum_{v \in S} x_v$$

- y_v the contents of v after the Stepmother moved
- $\chi(G)$ the chromatic number of G
- $\omega(G)$ the clique number of G
- For $S \subseteq V$ we write $\chi(S)$
- $\mathcal{H}\langle k \rangle = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{k}$

Introduction

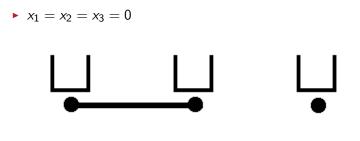
Definitions

Example game

The game on general graphs

The game on holes

Conjectures



Introduction Definitions Example game The game on general graphs

The game on holes

Conjectures

$$y_1 = y_2 = y_3 = 1/3$$

Introduction Definitions Example game The game on general graphs

The game on holes

Conjectures

Universiteit Utrecht

Þ

•
$$x_2 = x_3 = 0$$

Introduction Definitions Example game The game on

The game on

Conjectures

Introduction Definitions Example game The game on

The game on holes

Conjectures

•
$$x_2 = x_3 = 0$$

Introduction Definitions Example game The game on

The game on holes

Conjectures

•
$$y_2 = y_3 = 0$$

Introduction Definitions Example game The game on

The game on

Conjectures

Results in this paper

- g-bucket(G) $\leq \mathcal{H} \left\langle \chi(G) 1 \right\rangle$
- $\texttt{bucket}(\mathsf{G}) \geq \mathcal{H} \left< \omega(\mathsf{G}) 1 \right>$
- ▶ bucket(G) = $\mathcal{H} \langle \omega(G) 1 \rangle$ ∀ graphs on $n \leq 6$ vertices
- $bucket(C_{2m+1}) = 1$
- g-bucket $(C_{2m+1}) = 1 + \frac{1}{m} \cdot 2^{-m}$
- ▶ g-bucket $\left(\overline{C_{2m+1}}\right) \leq \mathcal{H} \left< m \right> 1/(2m)$
- ▶ g-bucket $\left(\overline{\mathcal{C}_{2m+1}}\right) \geq \mathcal{H}\left\langle m-1 \right\rangle + \frac{m^2 3m + 1}{2m^2(m-1)}$

Introduction Definitions **Example game** The game on general graphs

The game on holes

Upper bound on general graphs

TheoremEvery graph G = (V, E) satisfies g-bucket $(G) \leq \mathcal{H} \langle \chi(G) - 1 \rangle$ Example gameProof.
GREEDY maintains the following system of invariantsThe game on
general graphs $x(S) < \chi(S) \cdot (1 + \mathcal{H} \langle \chi(G) - 1 \rangle - \mathcal{H} \langle \chi(S) \rangle)$ for all sets $S \subseteq V$
(1)The game on
bodesApply (1) to $S = \{v\}$ to show $x_v < \mathcal{H} \langle \chi(G) - 1 \rangle$ The game on
 $\chi(G) - 1$

Upper bound for GREEDY on general graphs continued

If $\chi(S) = \chi(G)$, then

$$y(S) \leq y(V-I) \leq \frac{\chi(G)-1}{\chi(G)}y(V)$$

$$\leq \frac{\chi(G)-1}{\chi(G)}(x(V)+1) < \chi(G)-1$$

Assume that $\chi(S) < \chi(G)$ observe that

$$y(S) \leq \chi(S) \cdot y(I) \tag{2}$$

The game on holes

Conjectures

Upper bound for GREEDY on general graphs continued

Furthermore

$$x(S \cup I) < (\chi(S) + 1) \cdot (1 + \mathcal{H} \langle \chi(G) - 1 \rangle - \mathcal{H} \langle \chi(S) + 1 \rangle)$$
(3)
Applying (2) and (3) we derive

ntroduction Definitions Example game

The game on general graphs

The game on holes

Conjectures

$$\begin{array}{ll} y(S) & \leq & \frac{\chi(S)}{\chi(S)+1} \left(y(S) + y(I) \right) & \leq & \frac{\chi(S)}{\chi(S)+1} \left(x(S \cup I) + 1 \right) \\ & < & \chi(S) \cdot \left(1 + \mathcal{H} \left\langle \chi(G) - 1 \right\rangle - \mathcal{H} \left\langle \chi(S) + 1 \right\rangle + \frac{1}{\chi(S)+1} \right) \\ & = & \chi(S) \cdot \left(1 + \mathcal{H} \left\langle \chi(G) - 1 \right\rangle - \mathcal{H} \left\langle \chi(S) \right\rangle \right) \end{array}$$

Lower bound on general graphs

Theorem

Every graph G = (V, E) satisfies $bucket(G) \geq \mathcal{H} \langle \omega(G) - 1 \rangle$ Let $\omega(G) = n$

Define a strategy for the Stepmother:

- Play game on the the largest clique, K
- At the first phase:
 - Fill repeatedly all buckets in K to the same level
 - This converges to $1-\epsilon$
- In second phase

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- In r-th round fill n r fullest buckets to the same level
- At the end of round n-2 at least one bucket contains $\mathcal{H}\left\langle n-1\right\rangle -\epsilon$

Introduction Definitions Example game The game on

general graphs The game on holes

Conjectures

Perfect graphs

Theorem

Every perfect graph G has $bucket(G) = g-bucket(G) = \mathcal{H} \langle \omega(G) - 1 \rangle$

Introduction Definitions Example game The game on

general graphs The game on holes

GREEDY odd holes: Upper bound

Theorem The odd cycle C_{2m+1} has g-bucket $(C_{2m+1}) \leq 1 + \frac{1}{m} \cdot 2^{-m}$

Proof(Upper bound).

GREEDY maintains the following invariants

$$\sum_{i=1}^{2m+1} x_i < \frac{m+1}{m}$$

$$\sum_{i=k}^{k+2t-1} x_i < 1 + \frac{1}{m} \cdot 2^{t-m} \quad \text{for } 1 \le k \le 2m+1, \ 1 \le t \le m$$

$$x_k < 1 + \frac{1}{m} \cdot 2^{-m} \quad \text{for } 1 \le k \le 2m+1$$
Universiteit Utrecht

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The game on holes

GREEDY odd holes: Lower bound

Theorem

The odd cycle
$$C_{2m+1}$$
 has g-bucket $(C_{2m+1}) \geq 1 + rac{1}{m} \cdot 2^{-m}$

Proof.

First phase: Fill repeatedly all buckets to the same level

Second phase:

									noies
	B_1	B_2	B ₃		B_{2m-3}	B_{2m-2}	B_{2m-1}	B _{2m}	Conj
SL	$\frac{1}{m}$	$\frac{1}{m}$	$\frac{1}{m}$		$\frac{1}{m}$	$\frac{1}{m}$	$\frac{1}{m}$	$\frac{1}{m}$	
CL	0	$\frac{1}{m}$	0		$\frac{1}{m}$	0	$\frac{1}{m}$	$\frac{1}{m}$	
SL	0	$\frac{1}{m}$	$\frac{1}{m}$		α_1	α_1	α_1	α_1	1
CL	0	0	$\frac{1}{m}$	•••	0	α_1	α_1	0]
		B_{k+1}	B_{k+2}		B_{2m-k-1}	B_{2m-k}	B_{2m-k+1}	B_{2m-k+2}	
CL	0	$\frac{1}{m}$	0		$\frac{1}{m}$	0	α_{k-1}	α_{k-1}	
SL	0	$\frac{1}{m}$	$\frac{1}{m}$	•••	α_k	α_k	α_k	α_k	
CL	0	0	$\frac{1}{m}$		0	α_k	α_k	0]
								100 P 100	

The game on holes

GREEDY odd holes: Lower bound (continued)

Third phase:

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline & \dots & B_{m+1} & B_{m+2} & \dots \\ \hline CL & 0 & \alpha_{m-1} & \alpha_{m-1} & 0 \\ SL & 0 & \alpha_{m-1} + \frac{1}{2} & \alpha_{m-1} + \frac{1}{2} & 0 \\ CL & 0 & \alpha_{m-1} + \frac{1}{2} & 0 & 0 \\ \hline \end{array}$$

The alpha values solve to

$$\begin{aligned} \alpha_k &= \frac{1}{2m} \left(k + 1 + 2^{-k} \right) \Rightarrow \\ \alpha_{m-1} + \frac{1}{2} &= 1 + \frac{1}{m} \cdot 2^{-m} \end{aligned}$$

Universiteit Utrecht

The game on holes

Possible future research

Conjecture

Every graph G satisfies $ext{bucket}(G) = \mathcal{H} \langle \omega(G) - 1
angle$

Conjecture

A graph G is perfect, if and only if bucket(G) = g-bucket(G)

Conjecture

The difference between g-bucket(G) and bucket(G) is bounded by an absolute constant (that does not depend on G) Introduction Definitions Example game The game on general graphs

The game on holes

