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Introduction to the game

I Proposed problem for the International Mathematical
Olympiad

I We study variant where water arrives in rounds and the
game board is an undirected graph
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The game

I Game played on undirected simple graph G = (V ,E )

I Every vertex v contains a bucket

I Every edge [u, v ] ∈ E indicates an incompatibility

I In every round the Stepmother distributes a liter of water
in the buckets

I Cinderella empties the buckets in an independent set

I Stepmother tries to reach an overflow

I Cinderella wants to avoid an overflow
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Some definitions and notation

I bucket′(G ): infimum of all bucket sizes Cinderella needs
to win

I bucket(G ) : bucket′(G )− 1 is the bucket number of G

I GREEDY: empty maximum weight independent set every
turn

I g-bucket(G ): bucket number of G when Cinderella uses a
GREEDY strategy



Introduction

Definitions

Example game

The game on
general graphs

The game on
holes

Conjectures

6

Definitions

I x = (xv ) v ∈ V where xv is the contents of bucket v at the
start of a round

I x(S) =
∑

v∈S xv

I yv the contents of v after the Stepmother moved

I χ(G ) the chromatic number of G

I ω(G ) the clique number of G

I For S ⊆ V we write χ(S)

I H〈k〉 = 1 + 1
2 + 1

3 + 1
4 + . . . . . . + 1

k
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Example with bucket size 1.6

I x1 = x2 = x3 = 0
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Example with bucket size 1.6

I y1 = y2 = y3 = 1/3
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Example with bucket size 1.6

I x1 = 1/3

I x2 = x3 = 0
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Example with bucket size 1.6

I y1 = y2 = 2/3

I y3 = 0
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Example with bucket size 1.6

I x1 = 2/3

I x2 = x3 = 0



Introduction

Definitions

Example game

The game on
general graphs

The game on
holes

Conjectures

12

Example with bucket size 1.6

I y1 = 5/3 > 1.6

I y2 = y3 = 0
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Results in this paper

I g-bucket(G ) ≤ H〈χ(G )− 1〉
I bucket(G ) ≥ H〈ω(G )− 1〉
I bucket(G ) = H〈ω(G )− 1〉 ∀ graphs on n ≤ 6 vertices

I bucket(C2m+1) = 1

I g-bucket(C2m+1) = 1 + 1
m · 2

−m

I g-bucket
(
C2m+1

)
≤ H〈m〉 − 1/(2m)

I g-bucket
(
C2m+1

)
≥ H〈m − 1〉+ m2−3m+1

2m2(m−1)
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Upper bound on general graphs

Theorem
Every graph G = (V ,E ) satisfies g-bucket(G ) ≤ H〈χ(G )− 1〉

Proof.
GREEDY maintains the following system of invariants

x(S) < χ(S)·( 1 +H〈χ(G )− 1〉 − H 〈χ(S)〉 ) for all sets S ⊆ V
(1)

Apply (1) to S = {v} to show xv < H〈χ(G )− 1〉
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Upper bound for GREEDY on general graphs
continued

If χ(S) = χ(G ), then

y(S) ≤ y(V − I ) ≤ χ(G )− 1

χ(G )
y(V )

≤ χ(G )− 1

χ(G )
(x(V ) + 1) < χ(G )− 1

Assume that χ(S) < χ(G ) observe that

y(S) ≤ χ(S) · y(I ) (2)
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Upper bound for GREEDY on general graphs
continued

Furthermore

x(S ∪ I ) < (χ(S) + 1 ) · ( 1 +H〈χ(G )− 1〉 − H 〈χ(S) + 1〉 )
(3)

Applying (2) and (3) we derive

y(S) ≤ χ(S)

χ(S) + 1
(y(S) + y(I )) ≤ χ(S)

χ(S) + 1
(x(S ∪ I ) + 1)

< χ(S) ·
(

1 +H〈χ(G )− 1〉 − H 〈χ(S) + 1〉+
1

χ(S) + 1

)
= χ(S) · (1 +H〈χ(G )− 1〉 − H 〈χ(S)〉)
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Lower bound on general graphs

Theorem
Every graph G = (V ,E ) satisfies bucket(G ) ≥ H〈ω(G )− 1〉
Let ω(G ) = n

Define a strategy for the Stepmother:

I Play game on the the largest clique, K
I At the first phase:

• Fill repeatedly all buckets in K to the same level
• This converges to 1− ε

I In second phase
• In r -th round fill n − r fullest buckets to the same level
• At the end of round n − 2 at least one bucket contains
H〈n − 1〉 − ε
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Perfect graphs

Theorem
Every perfect graph G has
bucket(G ) = g-bucket(G ) = H〈ω(G )− 1〉
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GREEDY odd holes: Upper bound

Theorem
The odd cycle C2m+1 has g-bucket(C2m+1) ≤ 1 + 1

m · 2
−m

Proof(Upper bound).

GREEDY maintains the following invariants

2m+1∑
i=1

xi <
m + 1

m

k+2t−1∑
i=k

xi < 1 +
1

m
· 2t−m for 1 ≤ k ≤ 2m + 1, 1 ≤ t ≤ m

xk < 1 +
1

m
· 2−m for 1 ≤ k ≤ 2m + 1
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GREEDY odd holes: Lower bound

Theorem
The odd cycle C2m+1 has g-bucket(C2m+1) ≥ 1 + 1

m · 2
−m

Proof.
First phase: Fill repeatedly all buckets to the same level

Second phase:
B1 B2 B3 . . . B2m−3 B2m−2 B2m−1 B2m

SL 1
m

1
m

1
m

. . . 1
m

1
m

1
m

1
m

CL 0 1
m

0 . . . 1
m

0 1
m

1
m

SL 0 1
m

1
m

. . . α1 α1 α1 α1

CL 0 0 1
m

. . . 0 α1 α1 0

. . . Bk+1 Bk+2 . . . B2m−k−1 B2m−k B2m−k+1 B2m−k+2

CL 0 1
m

0 . . . 1
m

0 αk−1 αk−1

SL 0 1
m

1
m

. . . αk αk αk αk

CL 0 0 1
m

. . . 0 αk αk 0
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GREEDY odd holes: Lower bound (continued)

Third phase:

. . . Bm+1 Bm+2 . . .

CL 0 αm−1 αm−1 0
SL 0 αm−1 + 1

2 αm−1 + 1
2 0

CL 0 αm−1 + 1
2 0 0

The alpha values solve to

αk =
1

2m

(
k + 1 + 2−k

)
⇒

αm−1 +
1

2
= 1 +

1

m
· 2−m
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Possible future research

Conjecture

Every graph G satisfies bucket(G ) = H〈ω(G )− 1〉

Conjecture

A graph G is perfect, if and only if bucket(G ) = g-bucket(G )

Conjecture

The difference between g-bucket(G ) and bucket(G ) is
bounded by an absolute constant (that does not depend on G)
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