Maximum Independent Set in 2-Direction Outer-Segment Graphs

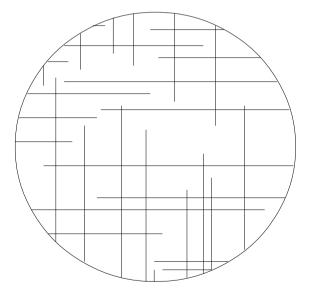
Holger Flier, Matúš Mihalák, Peter Widmayer, Anna Zych

ETH Zürich

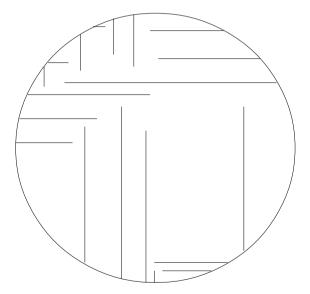
The problem: Maximum Independent Set of Segments

aligned horizontally or vertically inside a disk with one endpoint on the boundary

Input: A set of segments as above



Output: A subset of segments pairwise disjoint



2

The problem reduces to Maximum Independent Set (MIS) Problem in corresponding intersection graphs

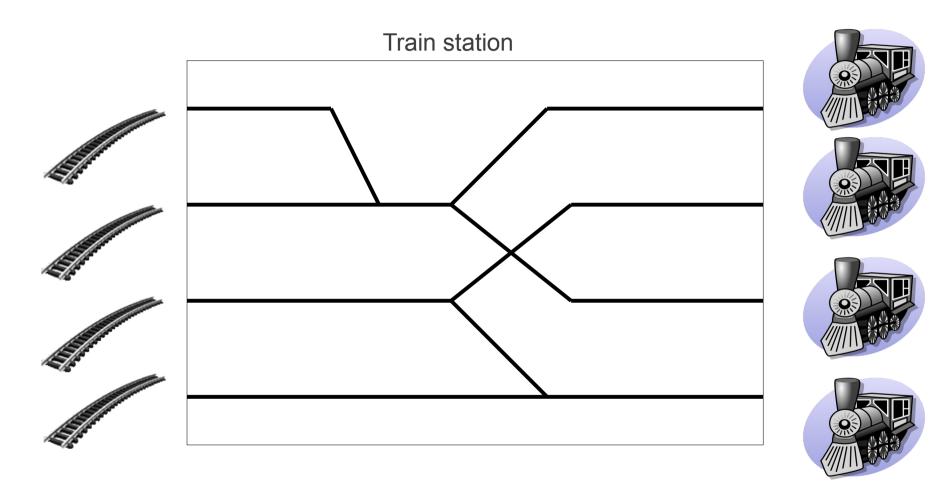
Our result

 MIS (of segments) is polynomial for segments in 2 directions with one endpoint fixed on a boundary of a disk

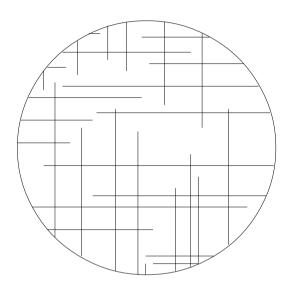
Related results [Kratochvíl, Nešetřil 1990]

- MIS is NP-hard for segments in the plane
 - aligned in 2 directions...
 - ...or in 3 directions but no two segments in one direction intersect

Why this problem?



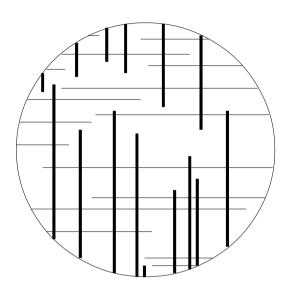
MIS is open for outer-string graphs



Easy instance: opposite segments do not intersect

The intersection graph is bipartite:

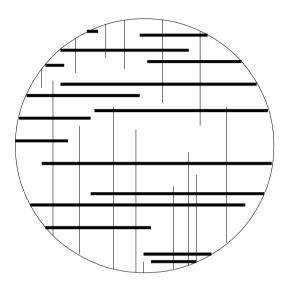
 $G = (V, E): V = A \cup B, E \subseteq A \times B$



Easy instance: opposite segments do not intersect

The intersection graph is bipartite: $G = (V, E): V = A \cup B, E \subseteq A \times B$

A: vertical segments

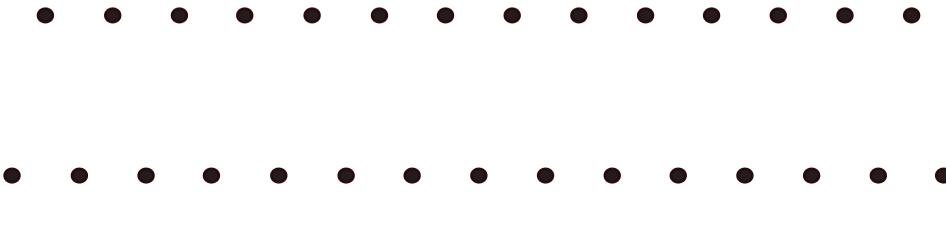


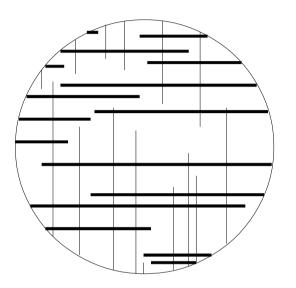
Easy instance:

opposite segments do not intersect

The intersection graph is bipartite: $G = (V, E): V = A \cup B, E \subseteq A \times B$

A: vertical segments B: horizontal segments





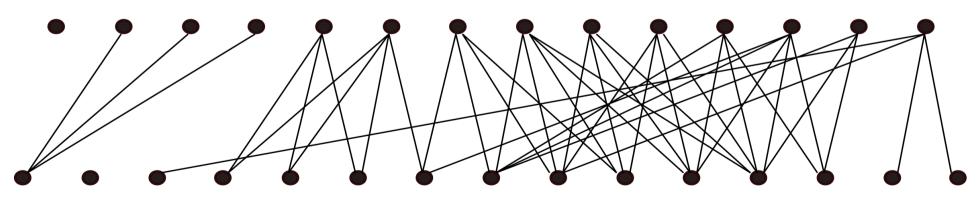
Easy (bipartite) instance: opposite segments do not intersect

The intersection graph is bipartite:

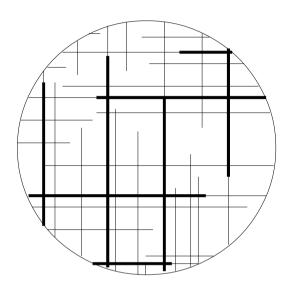
 $G = (V, E): V = A \cup B, E \subseteq A \times B$

A: vertical segments

- **B:** horizontal segments
- E: edges connect intersecting pairs: vertical with horizontal

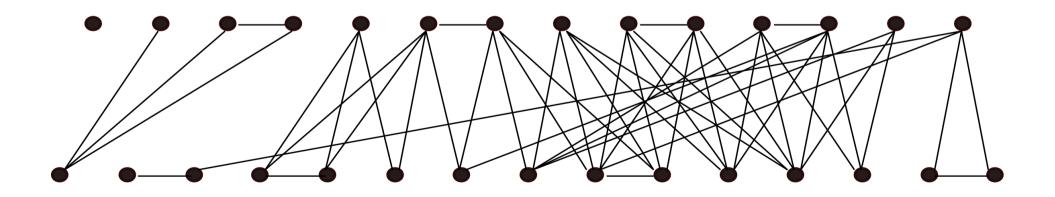


Independent set in bipartite graphs is polynomial!

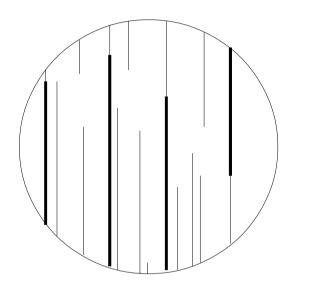


Not easy instance: opposite segments intersect

The intersection graph is bipartite plus two matchings:



Independent set is NP-hard in such graphs!

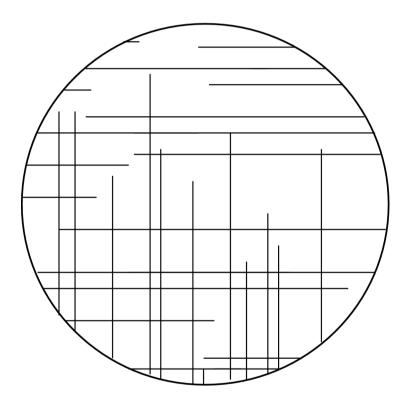


Easy instance: no horizontal segments (one direction)

The intersection graph is a **matching**: also a bipartite instance

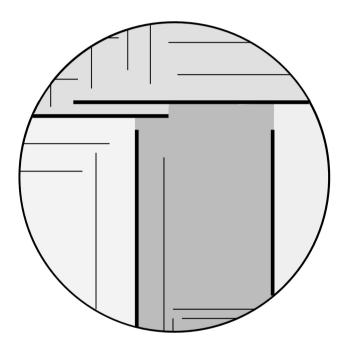
3 side instances

no top segments



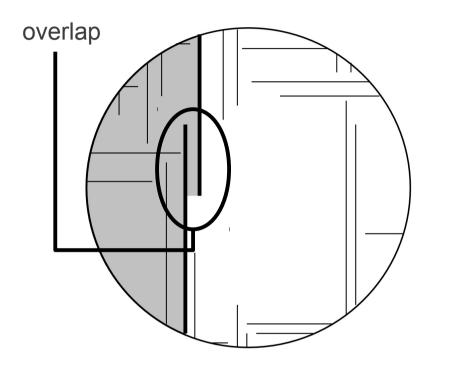
Not trivial: solvable in polynomial time with dynamic programming (still to come)

General case: Decomposition to simpler instances

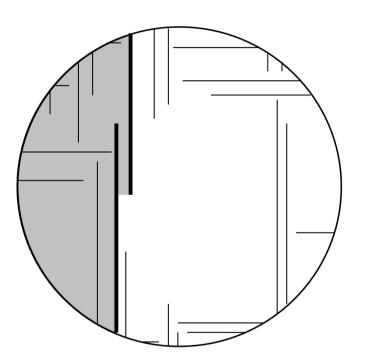


- Decompose the input instance into few 3 side instances
- Decomposition is determined by a constant number of segments
- Exhaustively search for the decomposition segments and solve 3 side instances

Getting rid of overlaps



Getting rid of overlaps

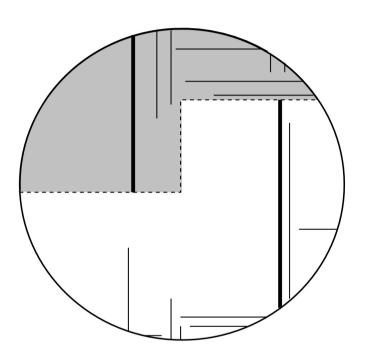


Instance of interest:

- No overlapping pair of left segments in optimum
- No overlapping pair of right segments in optimum

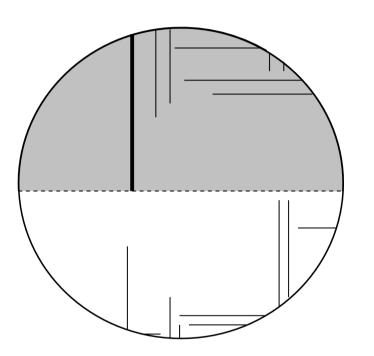
This partition is determined by four segments of the optimum

Completing the partition into 3 side instances



Case 1: an overlapping pair of a left and a right segment

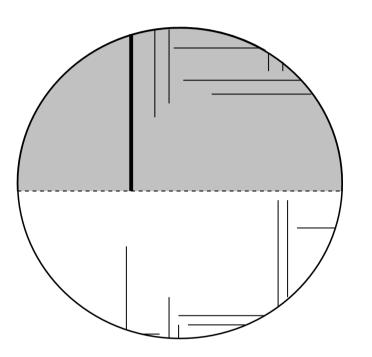
Completing the partition into 3 side instances



Case 1: an overlapping pair of a left and a right segment $\sqrt{}$

Case 2: no overlapping pair

Completing the partition into 3 side instances

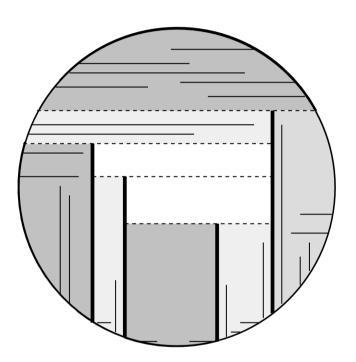


Case 1: an overlapping pair of a left and a right segment $\sqrt{}$

Case 2: no overlapping pair $\sqrt{}$

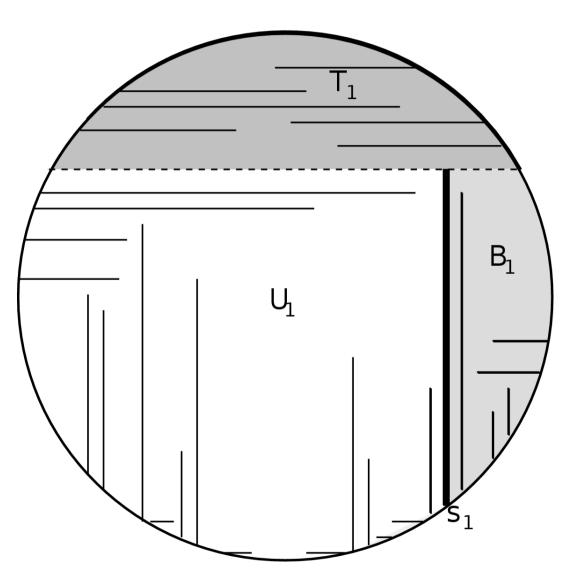
The overall partition into 3 side instances is determined by at most six segments

The algorithm for 3 side instances

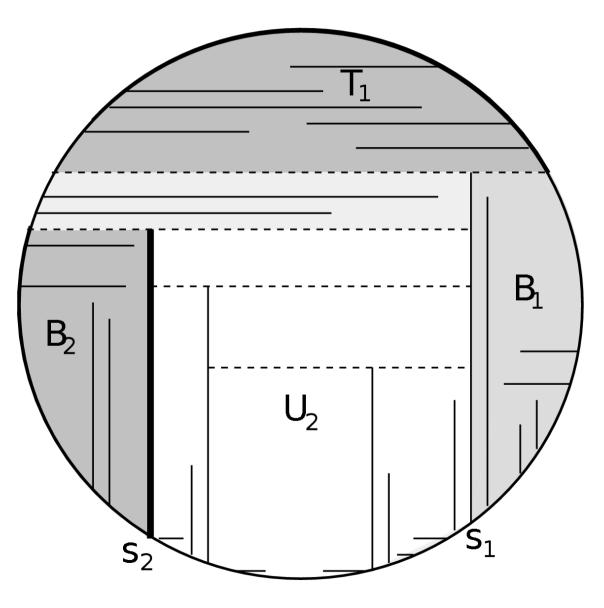


- Bottom side segments of optimum partition the disk into regions:
 - optimum is the sum of optima within the regions
 - instances within the regions are bipartite
- Dynamic programming:
 - to compute a solution for a region,
 use partial solutions computed
 for regions contained in it

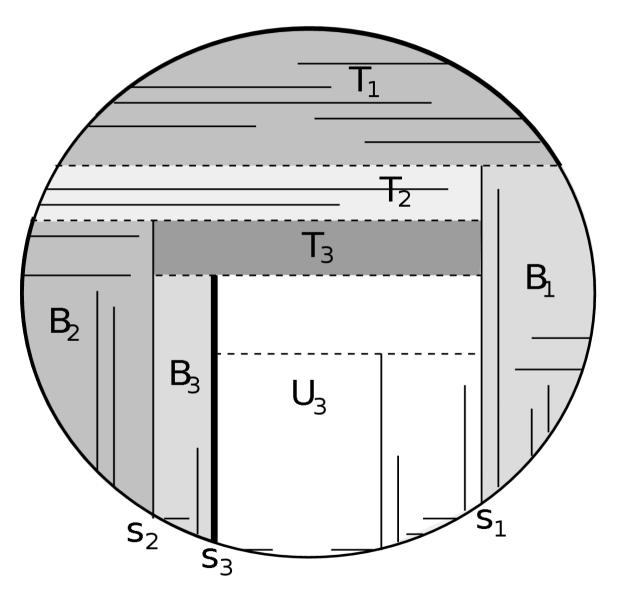
Decomposing 3 side instances



Decomposing 3 side instances

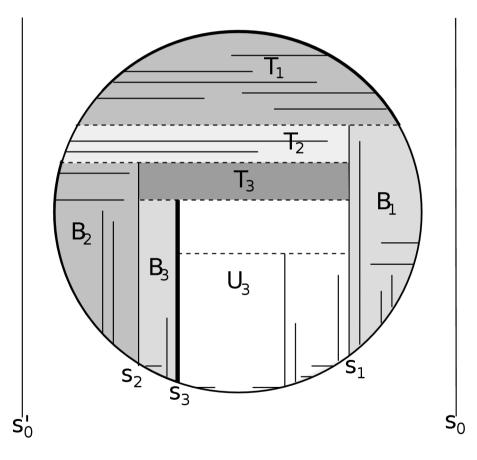


Decomposing 3 side instances



Dynamic Programming

 $MIS[U_i]$ is a maximum independent set in $D \setminus U_i$



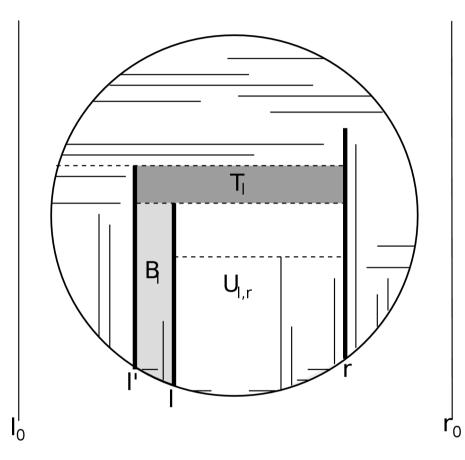
Properties:

 $U_{i-1} = U_i \cup B_i \cup T_i$

 U_i is determined uniquely by a left and a right segment

The sweeping process processes the left segments from left to right and the right segments from right to left

Dynamic Programming



Properties:

$$U_{i-1} = U_i \cup B_i \cup T_i$$

 $U_{l,r}$ is determined uniquely By S_{l} (left) and s_{r} (right segment)

The sweeping process processes the left segments from left to right and the right segments from right to left

 $MIS[U_{l,r}]$ is a maximum independent set in $D \setminus U_{l,r}$:

 $MIS[U_{0,0}] = 0$ $MIS[U_{l,r}] = max_{l' < l: s_{l'} \ge s_{l}} (MIS[U_{l',r}] + OPT(T_{l}) + OPT(B_{l}))^{23}$

Open Problems

- MIS in outer-segment graphs for segments aligned in more than 2 directions
- MIS in outer-string graphs