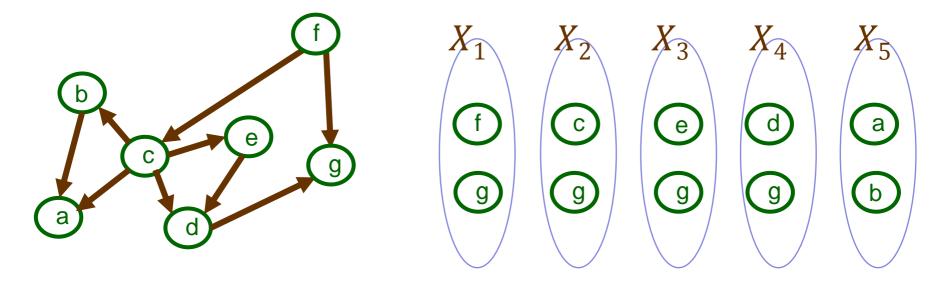
A polynomial time algorithm for bounded directed pathwidth

Hisao Tamaki Meiji University

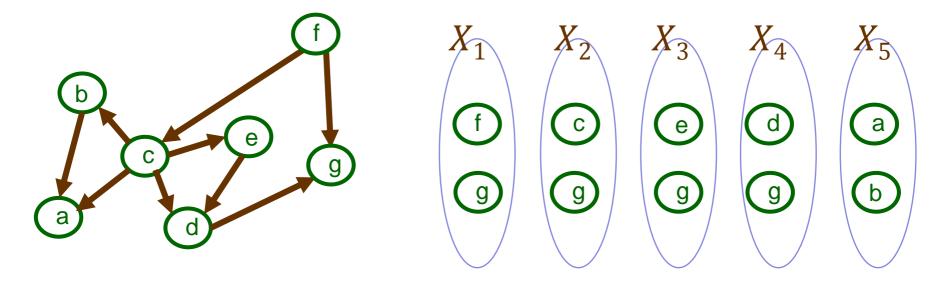
A directed path-decomposition of ${\cal G}$



- 1. for each $v \in V(G)$, $I_v = \{i \mid v \in X_i\}$ is a single nonempty interval
- 2. for each directed edge (u, v) there is a pair $i \le j$ such that $u \in X_i$ and $v \in X_j$

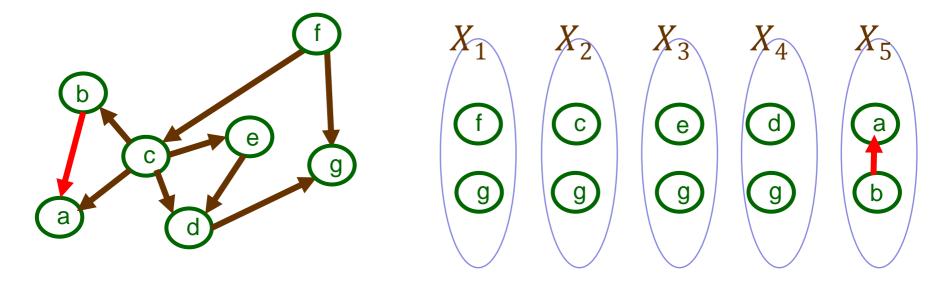
Undirected Directed pathwidth/decomposition

A directed path-decomposition of ${\it G}$



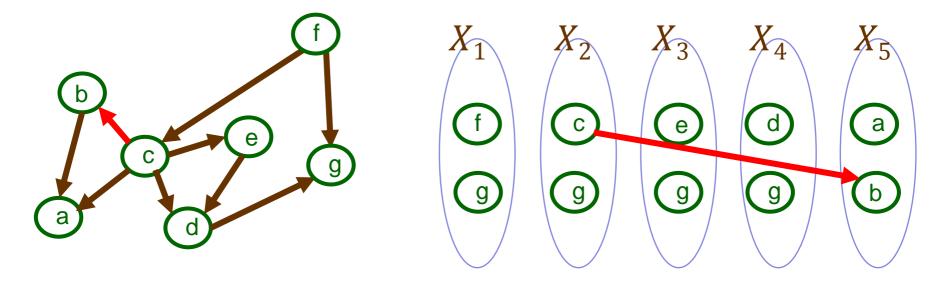
- 1. for each $v \in V(G)$, $I_v = \{i \mid v \in X_i\}$ is a single nonempty interval
- 2. for each directed edge (u, v) there is a pair $i \le j$ such that $u, v \in X_i$ $u \in X_i$ and $v \in X_j$

A directed path-decomposition of ${\cal G}$



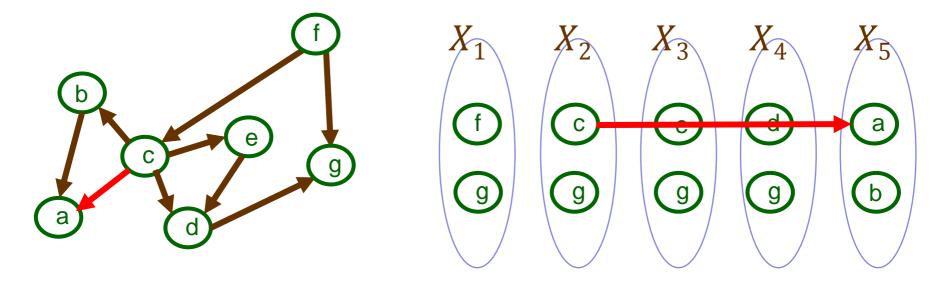
- 1. for each $v \in V(G)$, $I_v = \{i \mid v \in X_i\}$ is a single nonempty interval
- 2. for each directed edge (u, v) there is a pair $i \le j$ such that $u \in X_i$ and $v \in X_j$

A directed path-decomposition of ${\cal G}$



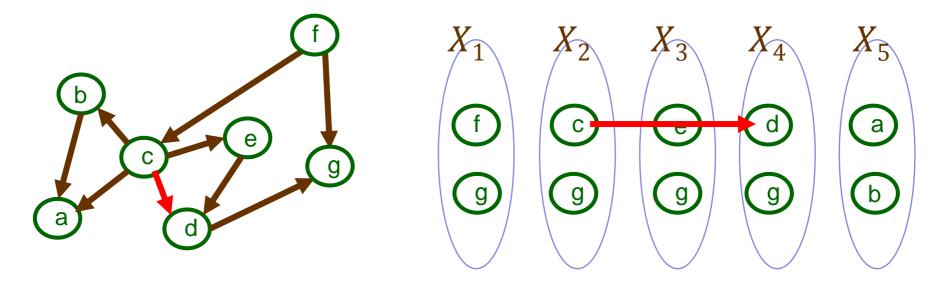
- 1. for each $v \in V(G)$, $I_v = \{i \mid v \in X_i\}$ is a single nonempty interval
- 2. for each directed edge (u, v) there is a pair $i \le j$ such that $u \in X_i$ and $v \in X_j$

A directed path-decomposition of ${\cal G}$



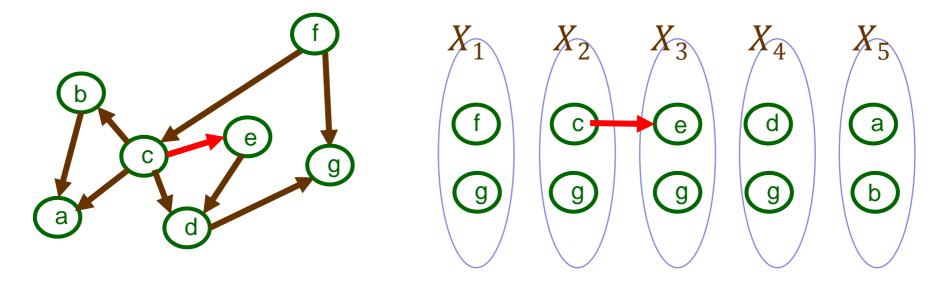
- 1. for each $v \in V(G)$, $I_v = \{i \mid v \in X_i\}$ is a single nonempty interval
- 2. for each directed edge (u, v) there is a pair $i \le j$ such that $u \in X_i$ and $v \in X_j$

A directed path-decomposition of ${\cal G}$



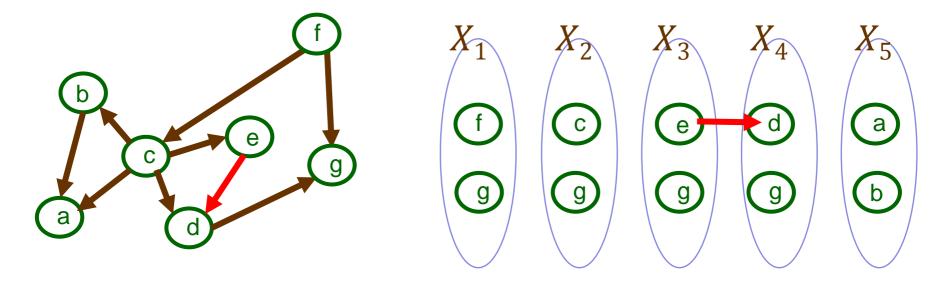
- 1. for each $v \in V(G)$, $I_v = \{i \mid v \in X_i\}$ is a single nonempty interval
- 2. for each directed edge (u, v) there is a pair $i \le j$ such that $u \in X_i$ and $v \in X_j$

A directed path-decomposition of ${\cal G}$



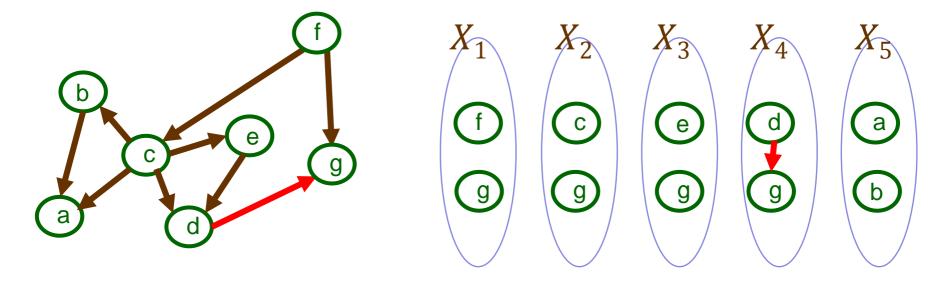
- 1. for each $v \in V(G)$, $I_v = \{i \mid v \in X_i\}$ is a single nonempty interval
- 2. for each directed edge (u, v) there is a pair $i \le j$ such that $u \in X_i$ and $v \in X_j$

A directed path-decomposition of ${\cal G}$



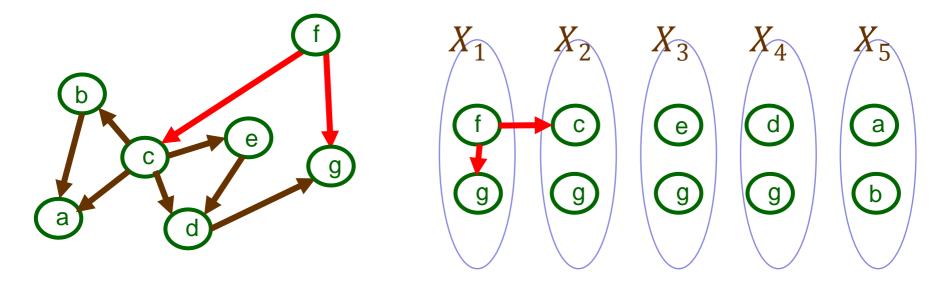
- 1. for each $v \in V(G)$, $I_v = \{i \mid v \in X_i\}$ is a single nonempty interval
- 2. for each directed edge (u, v) there is a pair $i \le j$ such that $u \in X_i$ and $v \in X_j$

A directed path-decomposition of ${\cal G}$



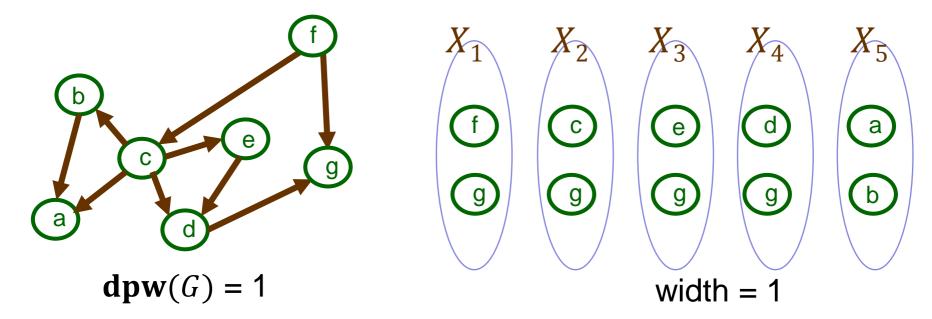
- 1. for each $v \in V(G)$, $I_v = \{i \mid v \in X_i\}$ is a single nonempty interval
- 2. for each directed edge (u, v) there is a pair $i \le j$ such that $u \in X_i$ and $v \in X_j$

A directed path-decomposition of ${\cal G}$



- 1. for each $v \in V(G)$, $I_v = \{i \mid v \in X_i\}$ is a single nonempty interval
- 2. for each directed edge (u, v) there is a pair $i \le j$ such that $u \in X_i$ and $v \in X_j$

A directed path-decomposition of ${\cal G}$



The width of a directed path-decomposition is $max_i |X_i| - 1$.

G

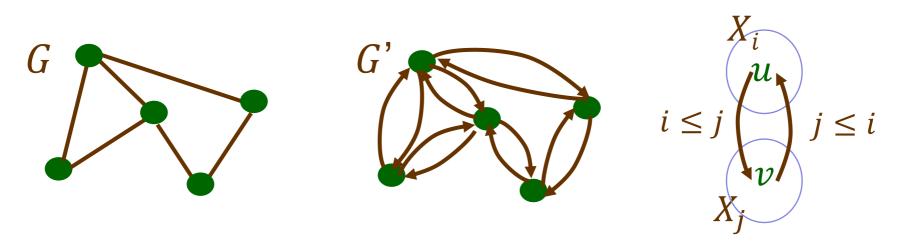
The directed pathwidth of G is the minimum w such that there is a directed path-decomposition of G of width w.

Observation 1

The problem of deciding the directed-pathwidth is a generalization of that of deciding the pathwidth.

G: undirected graph

G': digraph with a pair of anti-parallel edges for each edge of G

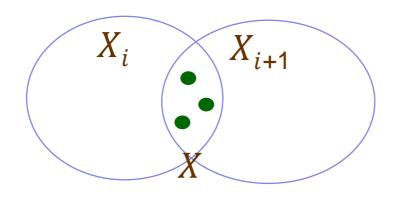


The condition for a path-decomposition of G

= the condition for a directed path-decomposition of G'

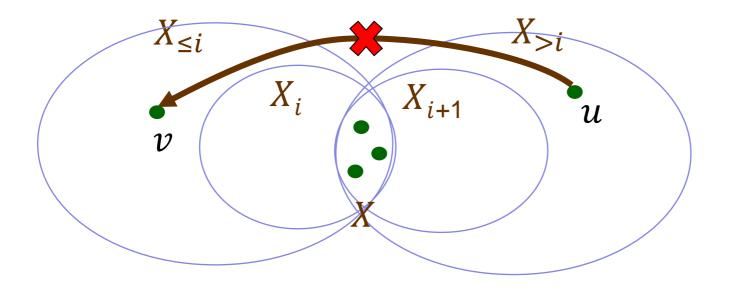
Observation 2

A directed path decomposition represents a linear system of dicuts.



Observation 2

A directed path-decomposition represents a linear system of dicuts of size at most the width.



Some facts on directed pathwidth

Introduced by Reed, Seymour, and Thomas in mid 90's.

- Relates to directed treewidth [Johnson, Robertson, Seymour and Thomas 01], D-width [Safari 05], Dag-width [Berwanger, Dawar, Hunter & Kreutzer 05, Obdrzalek 06], and Kelly-width[Hunter & Kreutzer 07] as pathwidth relates to treewidth.
- For digraphs of directed pathwidth w, some problems including directed Hamiltonian cycle can be solved in $n^{O(w)}$ time [JRST01].
- Used in a heuristic algorithm for enumerating attractors of boolean networks [Tamaki 10].

Complexity

- Input: positive integer k and graph (digraph) G
- Question: Is the (directed) pathwidth of G at most k?
- NP-complete for the undirected case [Kashiwabara & Fujisawa 79] and hence for the directed case.
- Undirected pathwidth is fixed parameter tractable:
 - $f(k)n^{O(1)}$ time: graph minor theorem
 - $2^{O(k^3)} n$ time: [Bodlaender 96, Bodlaender & Kloks 96]
- Directed pathwidth is open for FPT
 - Even for k = 2, no polynomial time was previously known.

Result

An $O(mn^{k+1})$ time algorithm for deciding if the directed pathwidth is $\leq k$ (and constructing the associated decomposition) for a digraph of n vertices and m edges.

Note This algorithm is extremely simple, easy to implement, and useful even for undirected pathwidth/-decomposition

(the linear time algorithm of Bodlaender depends exponentially on k^{3})

Notation

- G: digraph, fixed
- n = |V(G)|
- m = |E(G)|
- $N^{-}(X) = \{ u \in X | (u, v) \in E (G), v \in X \}$
 - : set of in-neighbors of $X \subseteq V(G)$
- $d^{-}(X) = |N^{-}(X)|$: in-degree of $X \subseteq V(G)$ $\Sigma(G)$: the set of all non-duplicating sequences of vertices of G

 $V(\sigma)$: the set of vertices appearing in $\sigma \in \Sigma(G)$

Directed vertex separation number

A vertex sequence $\sigma \in \Sigma(G)$ is *k*-feasible if

 $d^{-}(V(\tau)) \leq k$ for every prefix τ of σ .

The *directed vertex separation number* of G:

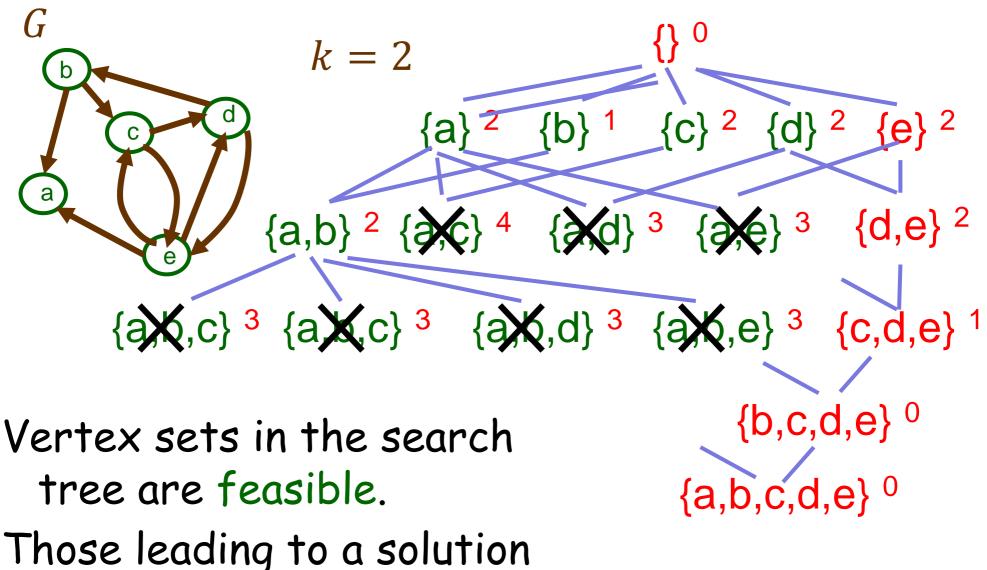
dvsn(G)

= min{ $k \mid \sigma \in \Sigma(G)$: $V(\sigma) = V(G)$ and σ is k-feasible}

Fact: dvsn(G) = dpw(G)

The conversion from a vertex separation sequence to a directed path-decomposition is straightforward.

Search tree for k-feasible sequences



are strongly feasible.

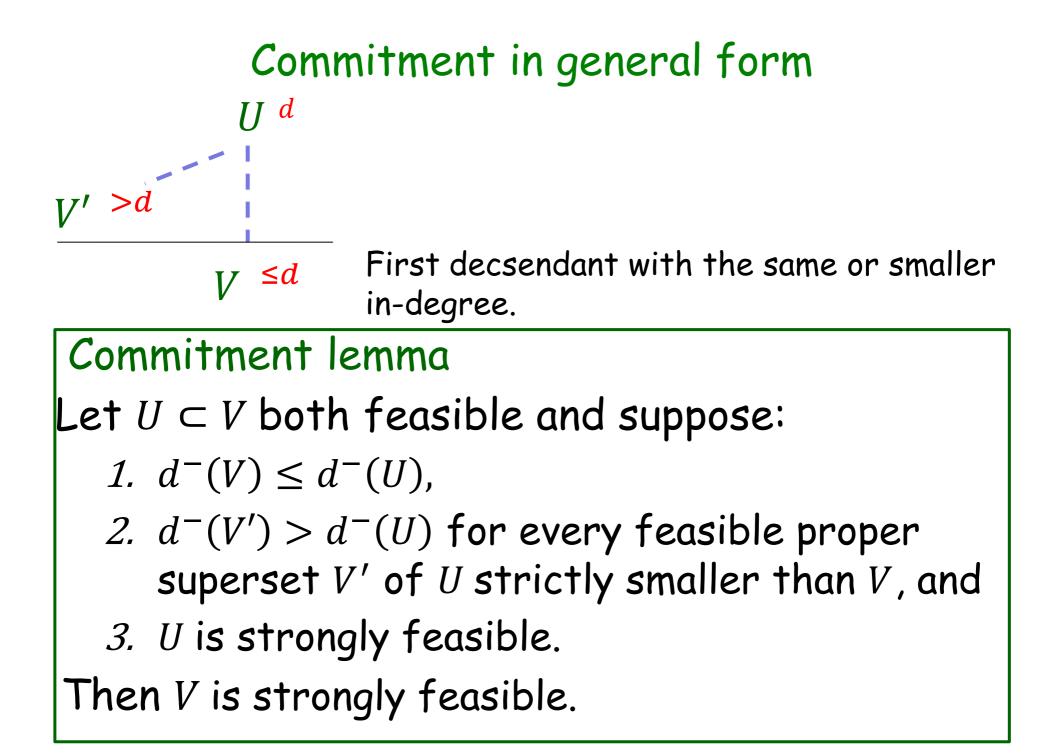
Commitment: a special case U^{d} Adding v does not increase the indegree. $U \cup \{v\} \leq d$

Is it safe to commit to this child? In other words, is it true that if U is strongly feasible then $U \cup \{v\}$ is?

Commitment: a special case U^{d} Adding v does not increase the in-degree. $U \cup \{v\} \leq d$

Is it safe to commit to this child? In other words, is it true that if U is strongly feasible then $U \cup \{v\}$ is?

YES, in a more genral form



Search tree pruning based on commitment

When a node has a descendant to which it can commit, all other descendants are removed from the tree.

- Effectively, branching occurs only when the in-degree increases.
- The pruned tree behaves like a depth k tree in a fuzzy sense.
- Can show, with some technicality, that the size of the pruned tree is at most n^{k+1} .

Proof of the commitment lemma

Fact:

The in-degree function d^{-} is submodular: for every pair of subsets $X, Y \subseteq V(G)$, $d^{-}(X) + d^{-}(Y) \ge d^{-}(X \cap Y) + d^{-}(X \cup Y)$

Proof of the commitment lemma

Step 1:

Let U and V as in the lemma. Then, $d^{-}(V) \leq d^{-}(X)$ holds for every X such that $U \subseteq X \subseteq V$. (Even if X is not feasible.)

Step 2:

Using the condition established in Step 1, derive the strong feasibility of V from that of U.

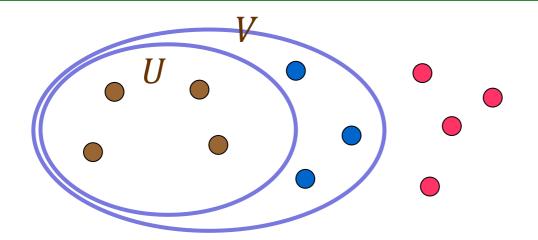
Assumptions:

 $U \subset V,$

U is strongly feasible, V is feasible, and

 $d^{\overline{}}(V) \leq d^{\overline{}}(X)$ for every X such that $U \subseteq X \subseteq V$.

Goal: V is also strongly feasible



Step 2 of the proof

Assumptions:

U is strongly feasible, V is feasible, and

 $d^{-}(V) \leq d^{-}(X)$ for every X such that $U \subseteq X \subseteq V$.

Goal: V is also strongly feasible

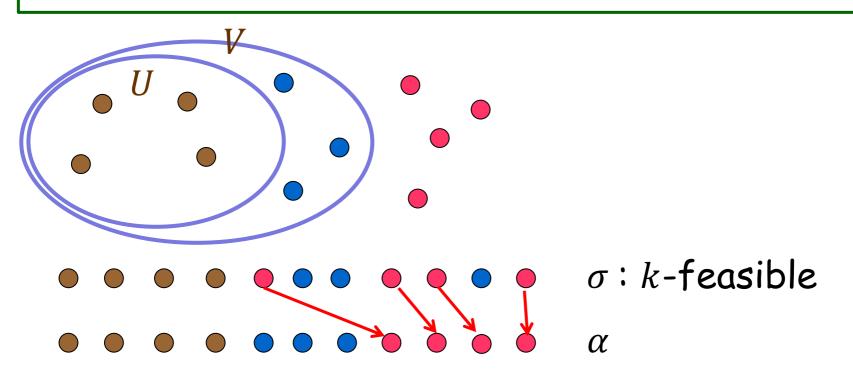


Assumptions:

V is feasible, and

 $d^{-}(V) \leq d^{-}(X)$ for every X such that $U \subseteq X \subseteq V$.

Goal: α is k-feasible

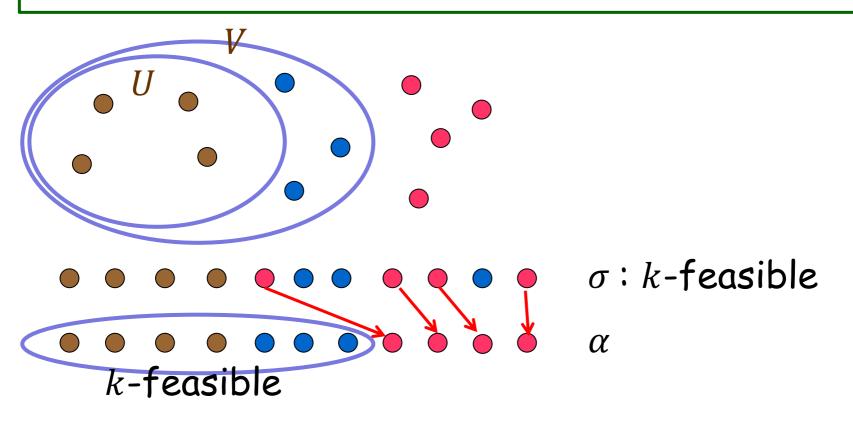


Assumptions:

V is feasible, and

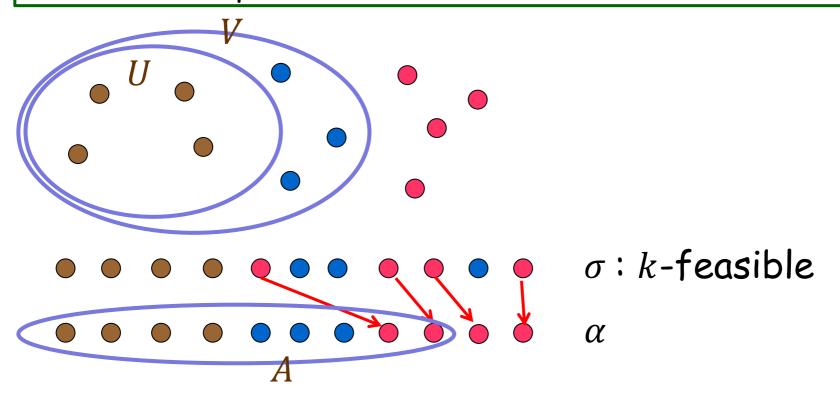
 $d^{\overline{}}(V) \leq d^{\overline{}}(X)$ for every X such that $U \subseteq X \subseteq V$.

Goal: α is *k*-feasible



 $d^{\overline{}}(V) \leq d^{\overline{}}(X)$ for every X such that $U \subseteq X \subseteq V$.

Goal: $d^{-}(A) \leq k$ for each superset A of V that is the vertex set of some prefix of α

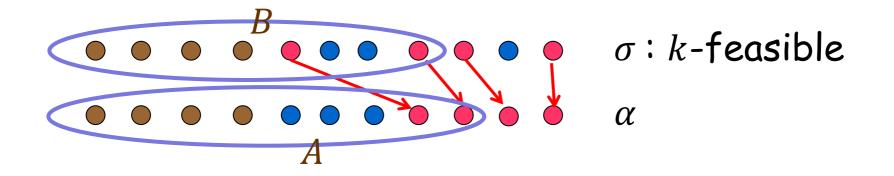


 $d^{\overline{}}(V) \leq d^{\overline{}}(X)$ for every X such that $U \subseteq X \subseteq V$.

Goal: $d^{-}(A) \leq k$

B: the vertex set of the minimal prefix of σ such that

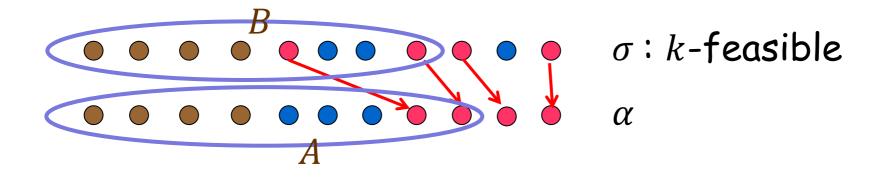
 $B \setminus V = A \setminus V$



 $d^{\overline{}}(V) \leq d^{\overline{}}(X)$ for every X such that $U \subseteq X \subseteq V$.

Goal: $d(A) \leq k$

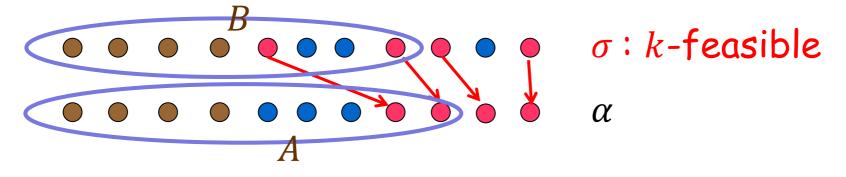
By submodularity: $d^{-}(V) + d^{-}(B) \ge d^{-}(V \cap B) + d^{-}(V \cup B)$



 $d^{-}(V) \leq d^{-}(X)$ for every X such that $U \subseteq X \subseteq V$.

Goal: $d(A) \leq k$

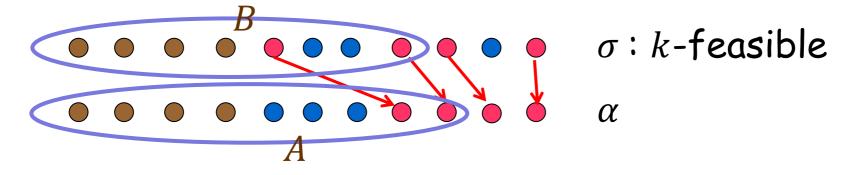
By submodularity: $d^{-}(V) + d^{-}(B) \ge d^{-}(V \cap B) + d^{-}(V \cup B)$ $\le k \ge d^{-}(V)$



Goal: $d(A) \leq k$: established

 $\Rightarrow \alpha$ is k-feasible $\Rightarrow V$ is strongly feasible

By submodularity: $d^{-}(V) + d^{-}(B) \ge d^{-}(V \cap B) + d^{-}(V \cup B)$ $\le k \ge d^{-}(V)$



Open problems

Is directed-pathwidth FPT, i.e., has an $f(k)n^{O(1)}$ time algorithm?

Are directed-treewidth, D-width, Dag-width, and Kelly-width in XP, i.e., has an $n^{O(k)}$ time algorithm?

More applications?