
Hisao Tamaki

Meiji University

A polynomial time algorithm for

bounded directed pathwidth

Directed pathwidth/decomposition

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖 𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

Directed pathwidth/decomposition

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖 𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

Undirected

*𝑢, 𝑣+

some 𝑖

𝑢, 𝑣 ∈ 𝑋𝑖

Directed pathwidth/decomposition

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖 𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

Directed pathwidth/decomposition

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖 𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

Directed pathwidth/decomposition

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖 𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

Directed pathwidth/decomposition

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖 𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

Directed pathwidth/decomposition

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖 𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

Directed pathwidth/decomposition

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖 𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

Directed pathwidth/decomposition

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖 𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

Directed pathwidth/decomposition

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖 𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

Directed pathwidth/decomposition

The width of a directed path-decomposition is

𝑚𝑎𝑥𝑖 |𝑋𝑖| - 1.

The directed pathwidth of 𝐺 is the minimum 𝑤 such that

there is a directed path-decomposition of 𝐺 of width 𝑤.

b

e

a d

c

𝐺

a c

b

f

g

e

g

d

A directed path-decomposition of 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

f

g g g

width = 1 𝐝𝐩𝐰(𝐺) = 1

𝐺: undirected graph

𝐺’: digraph with a pair of anti-parallel edges for each edge of 𝐺

The condition for a path-decomposition of 𝐺

= the condition for a directed path-decomposition of 𝐺′

Observation 1

𝐺 𝐺’
𝑋𝑖

𝑋𝑗

𝑢

𝑣

𝑗 ≤ 𝑖 𝑖 ≤ 𝑗

The problem of deciding the directed-pathwidth is a
generalization of that of deciding the pathwidth.

Observation 2

𝑋𝑖

A directed path decomposition represents a linear system
of dicuts.

𝑋𝑖+1

𝑋

Observation 2

𝑋≤𝑖

A directed path-decomposition represents a linear system
of dicuts of size at most the width.

𝑋𝑖+1

𝑋

𝑋>𝑖

𝑋𝑖 𝑢

𝑣

Some facts on directed pathwidth

Introduced by Reed, Seymour, and Thomas in mid 90’s.

Relates to directed treewidth [Johnson, Robertson, Seymour

and Thomas 01], D-width [Safari 05], Dag-width

[Berwanger, Dawar, Hunter & Kreutzer 05, Obdrzalek 06],

and Kelly-width[Hunter & Kreutzer 07] as pathwidth relates

to treewidth.

For digraphs of directed pathwidth 𝑤, some problems including

directed Hamiltonian cycle can be solved in 𝑛𝑂(𝑤) time

[JRST01] .

Used in a heuristic algorithm for enumerating attractors of

boolean networks [Tamaki 10].

Complexity

Input: positive integer k and graph (digraph) G

Question: Is the (directed) pathwidth of G at most k ?

NP-complete for the undirected case [Kashiwabara & Fujisawa

79] and hence for the directed case.

Undirected pathwidth is fixed parameter tractable:

𝑓 𝑘 𝑛𝑂(1) time: graph minor theorem

2𝑂 𝑘3
 𝑛 time: [Bodlaender 96, Bodlaender & Kloks 96]

Directed pathwidth is open for FPT

Even for k = 2, no polynomial time was previously known.

Result

An 𝑂 𝑚𝑛𝑘+1 time algorithm for deciding if the

directed pathwidth is ≤ 𝑘 (and constructing the

associated decomposition) for a digraph of 𝑛

vertices and 𝑚 edges.

Note This algorithm is extremely simple, easy to

implement, and useful even for undirected

pathwidth/-decomposition

(the linear time algorithm of Bodlaender depends

exponentially on k 3)

Notation

𝐺 : digraph, fixed

𝑛 = 𝑉 𝐺

 𝑚 = 𝐸 𝐺

𝑁
–

𝑋 = 𝑢 ∈ 𝑋 𝑢, 𝑣 ∈ 𝐸 𝐺 , 𝑣 ∈ 𝑋 +

 : set of in-neighbors of 𝑋 𝑉(𝐺)

𝑑
–

(𝑋) = |𝑁
–

(𝑋)| : in-degree of 𝑋 𝑉(𝐺)

Σ(𝐺): the set of all non-duplicating sequences of

 vertices of 𝐺

𝑉 (σ) : the set of vertices appearing in σ S(G)

Directed vertex separation number

A vertex sequence 𝜎 ∈ Σ 𝐺 is 𝑘-feasible if

𝑑− 𝑉 τ ≤ 𝑘 for every prefix τ of σ.

The directed vertex separation number of G :

dvsn(G)

 = min 𝑘 𝜎 ∈ Σ 𝐺 : 𝑉 𝜎 = 𝑉(𝐺)and σ is 𝑘-feasible+

Fact: dvsn(G) = dpw(G)

The conversion from a vertex separation sequence to a

directed path-decomposition is straightforward.

Search tree for k-feasible sequences

Vertex sets in the search
tree are feasible.

Those leading to a solution
are strongly feasible.

b

e

a

d
c

𝐺
𝑘 = 2

{a} 2

{} 0

{b} 1 {c} 2 {e} 2 {d} 2

{a,b} 2 {a,c} 4 {a,d} 3 {a,e} 3

{a,b,c} 3 {a,b,c} 3 {a,b,d} 3 {a,b,e} 3

{d,e} 2

{c,d,e} 1

{b,c,d,e} 0

{a,b,c,d,e} 0

Commitment: a special case

Is it safe to commit to this child?

In other words, is it true that

if 𝑈 is strongly feasible then 𝑈 ∪ 𝑣 is?

𝑈 𝑑

𝑈 ∪ 𝑣 ≤𝑑

Adding 𝑣 does not increase the indegree.

Commitment: a special case

Is it safe to commit to this child?

In other words, is it true that

if 𝑈 is strongly feasible then 𝑈 ∪ 𝑣 is?

 YES, in a more genral form

𝑈 𝑑

𝑈 ∪ 𝑣 ≤𝑑

Adding 𝑣 does not increase the in-degree.

Commitment in general form

 Commitment lemma

Let 𝑈 ⊂ 𝑉 both feasible and suppose:
1. 𝑑− 𝑉 ≤ 𝑑− 𝑈 ,

2. 𝑑− 𝑉′ > 𝑑− 𝑈 for every feasible proper
superset 𝑉′ of 𝑈 strictly smaller than 𝑉, and

3. 𝑈 is strongly feasible.

Then 𝑉 is strongly feasible.

𝑈 𝑑

𝑉 ≤𝑑

𝑉′ >𝑑
First decsendant with the same or smaller
in-degree.

Search tree pruning based on commitment

When a node has a descendant to which it can commit,

all other descendants are removed from the tree.

Effectively, branching occurs only when the in-degree

increases.

The pruned tree behaves like a depth 𝑘 tree in a

fuzzy sense.

Can show, with some technicality, that the size of the

pruned tree is at most 𝑛𝑘+1 .

Proof of the commitment lemma

Fact:

The in-degree function 𝑑
– is submodular:

 for every pair of subsets 𝑋, 𝑌 ⊆ 𝑉 (𝐺),

 𝑑
–

𝑋 + 𝑑
–

𝑌 ≥ 𝑑
–

(𝑋 ∩ 𝑌) + 𝑑
–

(𝑋 ∪ 𝑌)

Proof of the commitment lemma

Step 2:

Using the condition established in Step 1, derive the

strong feasibility of 𝑉 from that of 𝑈.

Step 1:

Let 𝑈 and 𝑉 as in the lemma. Then, 𝑑
–

𝑉 ≤ 𝑑
–

(𝑋)

holds for every 𝑋 such that 𝑈  𝑋  𝑉. (Even if 𝑋 is not

feasible.)

Step 2 of the proof

 Assumptions:

𝑈 ⊂ 𝑉,

𝑈 is strongly feasible, 𝑉 is feasible, and

𝑑
–

𝑉 ≤ 𝑑
–

(𝑋) for every 𝑋 such that 𝑈  𝑋  𝑉.

 Goal: 𝑉 is also strongly feasible

𝑈
𝑉

Step 2 of the proof

 Assumptions:

𝑈 is strongly feasible, 𝑉 is feasible, and

𝑑
–

𝑉 ≤ 𝑑
–

(𝑋) for every 𝑋 such that 𝑈  𝑋  𝑉.

 Goal: 𝑉 is also strongly feasible

𝑈
𝑉

 𝜎 : 𝑘-feasible

Step 2 of the proof

 Assumptions:

𝑉 is feasible, and

𝑑
–

𝑉 ≤ 𝑑
–

(𝑋) for every 𝑋 such that 𝑈  𝑋  𝑉.

 Goal: 𝛼 is 𝑘-feasible

𝑈
𝑉

 𝜎 : 𝑘-feasible

 𝛼

Step 2 of the proof

 Assumptions:

𝑉 is feasible, and

𝑑
–

𝑉 ≤ 𝑑
–

(𝑋) for every 𝑋 such that 𝑈  𝑋  𝑉.

 Goal: 𝛼 is 𝑘-feasible

𝑈
𝑉

 𝜎 : 𝑘-feasible

 𝛼
 𝑘-feasible

Step 2 of the proof

 𝑑
–

𝑉 ≤ 𝑑
–

(𝑋) for every 𝑋 such that 𝑈  𝑋  𝑉.

 Goal:𝑑
–

𝐴 ≤ 𝑘 for each superset 𝐴 of 𝑉 that is the vertex
set of some prefix of 𝛼

𝑈

𝑉

 𝜎 : 𝑘-feasible

 𝛼
𝐴

Step 2 of the proof

𝑑
–

𝑉 ≤ 𝑑
–

(𝑋) for every 𝑋 such that 𝑈  𝑋  𝑉.

 Goal: 𝑑

–
𝐴 ≤ 𝑘

 𝜎 : 𝑘-feasible

 𝛼
𝐴

 𝐵: the vertex set of the minimal prefix of𝜎 such that

𝐵 ∖ 𝑉 = 𝐴 ∖ 𝑉

𝐵

Step 2 of the proof

𝑑
–

𝑉 ≤ 𝑑
–

(𝑋) for every 𝑋 such that 𝑈  𝑋  𝑉.

 Goal: 𝑑

–
𝐴 ≤ 𝑘

 𝜎 : 𝑘-feasible

 𝛼
𝐴

By submodularity:

𝑑
–

𝑉 + 𝑑
–

𝐵 ≥ 𝑑
–

(𝑉 ∩ 𝐵) + 𝑑
–

(𝑉 ∪ 𝐵)

𝐵

𝐴 𝑋

Step 2 of the proof

𝑑
–

𝑉 ≤ 𝑑
–

(𝑋) for every 𝑋 such that 𝑈  𝑋  𝑉.

 Goal: 𝑑

–
𝐴 ≤ 𝑘

 𝜎 : 𝑘-feasible

 𝛼
𝐴

By submodularity:

𝑑
–

𝑉 + 𝑑
–

𝐵 ≥ 𝑑
–

(𝑉 ∩ 𝐵) + 𝑑
–

(𝑉 ∪ 𝐵)

𝐵

𝐴 𝑋

≤ 𝑘 ≥ 𝑑
–

𝑉

Step 2 of the proof

 Goal: 𝑑
–

𝐴 ≤ 𝑘 : established

 ⇒ 𝛼 is 𝑘-feasible ⇒ 𝑉 is strongly feasible

 𝜎 : 𝑘-feasible

 𝛼
𝐴

By submodularity:

𝑑
–

𝑉 + 𝑑
–

𝐵 ≥ 𝑑
–

(𝑉 ∩ 𝐵) + 𝑑
–

(𝑉 ∪ 𝐵)

𝐵

𝐴 𝑋

≤ 𝑘 ≥ 𝑑
–

𝑉

Open problems

Is directed-pathwidth FPT, i.e., has an 𝑓 𝑘 𝑛𝑂(1) time

algorithm?

Are directed-treewidth, D-width, Dag-width, and

Kelly-width in XP, i.e., has an 𝑛𝑂 𝑘 time algorithm?

More applications?

