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Directed pathwidth/decomposition 

1. for each 𝑣 ∈ 𝑉(𝐺) , 𝐼𝑣 = 𝑖  𝑣 ∈ 𝑋𝑖+ is a single non-

empty interval 

2. for each directed edge (𝑢, 𝑣) there is a pair 𝑖 ≤ 𝑗 such 

that 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗 
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Undirected  

*𝑢, 𝑣+  
---------- 

some  𝑖 

𝑢, 𝑣 ∈ 𝑋𝑖  
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Directed pathwidth/decomposition 

The width of a directed path-decomposition is      

𝑚𝑎𝑥𝑖 |𝑋𝑖| - 1. 

The directed pathwidth of 𝐺 is the minimum 𝑤 such that 

there is a directed path-decomposition of 𝐺 of width 𝑤. 
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width = 1 𝐝𝐩𝐰(𝐺) = 1 



𝐺: undirected graph 

𝐺’: digraph with a pair of anti-parallel edges for each edge of 𝐺 

 

 

 

 

The condition for a path-decomposition of 𝐺  

= the  condition for a directed path-decomposition of 𝐺′  

Observation 1 

𝐺 𝐺’ 
𝑋𝑖 

𝑋𝑗 
 

𝑢 

𝑣 

𝑗 ≤ 𝑖  𝑖 ≤ 𝑗  

The problem of deciding the directed-pathwidth is a 
generalization of that of deciding the pathwidth. 



Observation 2 

𝑋𝑖 

A directed path decomposition represents a linear system 
of dicuts. 

𝑋𝑖+1 

𝑋 



Observation 2 

𝑋≤𝑖  

 

A directed path-decomposition represents a linear system 
of dicuts of size at most the width. 

𝑋𝑖+1 

𝑋 

𝑋>𝑖  

 
𝑋𝑖 𝑢 

𝑣 



Some facts on directed pathwidth 

Introduced by Reed, Seymour, and Thomas in mid 90’s. 

Relates to directed treewidth [Johnson, Robertson, Seymour 

and Thomas 01], D-width [Safari 05], Dag-width 

[ Berwanger, Dawar, Hunter & Kreutzer 05, Obdrzalek 06], 

and Kelly-width[Hunter & Kreutzer 07] as pathwidth relates 

to treewidth.  

For digraphs of directed pathwidth 𝑤, some problems including 

directed Hamiltonian cycle can be solved in 𝑛𝑂(𝑤) time 

[JRST01] . 

Used in a heuristic algorithm for enumerating attractors of 

boolean networks [Tamaki 10]. 

 



Complexity 

Input: positive integer k and graph (digraph) G 

Question: Is the (directed) pathwidth of G at most k ? 

NP-complete for the undirected case [Kashiwabara & Fujisawa 

79] and hence for the directed case. 

Undirected pathwidth is fixed parameter tractable: 

𝑓 𝑘 𝑛𝑂(1) time: graph minor theorem 

2𝑂 𝑘3
 𝑛 time: [Bodlaender 96, Bodlaender & Kloks 96] 

Directed pathwidth is open for FPT 

Even for k = 2, no polynomial time was previously known. 



Result 

An 𝑂 𝑚𝑛𝑘+1  time algorithm for deciding if the 

directed pathwidth is ≤ 𝑘 (and constructing the 

associated decomposition) for a digraph of 𝑛 

vertices and 𝑚 edges. 

Note  This algorithm is extremely simple, easy to 

implement, and useful even for undirected 

pathwidth/-decomposition  

(the linear time algorithm of Bodlaender depends 

exponentially on k 3) 



Notation 

𝐺 : digraph, fixed 

𝑛 = 𝑉 𝐺  

 𝑚 =  𝐸 𝐺  

𝑁
–

𝑋 =  𝑢 ∈ 𝑋 𝑢, 𝑣 ∈ 𝐸 𝐺 , 𝑣 ∈ 𝑋 + 

    : set of in-neighbors of 𝑋 𝑉(𝐺) 

𝑑
–

(𝑋)  =  |𝑁
–

(𝑋)|  :  in-degree of 𝑋 𝑉(𝐺) 

Σ(𝐺 ): the set of all non-duplicating sequences of 

         vertices of 𝐺  

𝑉 (σ) : the set of vertices appearing in σ S(G )  



Directed vertex separation number 

A vertex sequence 𝜎 ∈ Σ 𝐺  is 𝑘-feasible if 

𝑑− 𝑉 τ ≤  𝑘 for every prefix τ of σ.  

The directed vertex separation number of G : 

dvsn(G ) 

  = min  𝑘 𝜎 ∈ Σ 𝐺 : 𝑉 𝜎 = 𝑉(𝐺)and σ is 𝑘-feasible+ 

Fact:  dvsn(G ) = dpw(G ) 

The conversion from a vertex separation sequence to a 

directed path-decomposition is straightforward. 



Search tree for k-feasible sequences 

Vertex sets in the search 
tree are feasible. 

Those leading to a solution 
are strongly feasible. 
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e 

a 

d 
c 

𝐺 
𝑘 = 2 

{a} 2 

{} 0 

{b} 1 {c} 2 {e} 2 {d} 2 

{a,b} 2 {a,c} 4 {a,d} 3 {a,e} 3 

{a,b,c} 3 {a,b,c} 3 {a,b,d} 3 {a,b,e} 3 

{d,e} 2 

{c,d,e} 1 

{b,c,d,e} 0 

{a,b,c,d,e} 0 



Commitment: a special case 

Is it safe to commit to this child? 

In other words, is it true that 

if 𝑈 is strongly feasible then 𝑈 ∪ 𝑣  is? 

𝑈 𝑑 

𝑈 ∪ 𝑣   ≤𝑑  

Adding 𝑣 does not increase the indegree. 



Commitment: a special case 

Is it safe to commit to this child? 

In other words, is it true that 

if 𝑈 is strongly feasible then 𝑈 ∪ 𝑣  is? 

 

           YES, in a more genral form 

𝑈 𝑑 

𝑈 ∪ 𝑣   ≤𝑑  

Adding 𝑣 does not increase the in-degree. 



Commitment in general form 

 Commitment lemma  

Let 𝑈 ⊂ 𝑉 both feasible and suppose: 
1. 𝑑− 𝑉 ≤ 𝑑− 𝑈 , 

2. 𝑑− 𝑉′ > 𝑑− 𝑈  for every feasible proper 
superset 𝑉′ of 𝑈 strictly smaller than 𝑉, and  

3. 𝑈 is strongly feasible. 

Then 𝑉 is strongly feasible. 

 
 

 

 

𝑈 𝑑 

𝑉  ≤𝑑  

𝑉′  >𝑑  
First decsendant with the same or smaller 
in-degree. 



Search tree pruning based on commitment 

When a node has a descendant to which it can commit, 

all other descendants are removed from the tree. 

Effectively, branching occurs only when the in-degree 

increases. 

The pruned tree behaves like a depth 𝑘 tree in a 

fuzzy sense. 

Can show, with some technicality, that the size of the 

pruned tree is at most 𝑛𝑘+1 . 



Proof of the commitment lemma 

Fact:  

The in-degree function  𝑑
–  is submodular:  

    for every pair of subsets 𝑋, 𝑌 ⊆  𝑉 (𝐺 ), 

    𝑑
–

𝑋 +  𝑑
–

𝑌 ≥  𝑑
–

(𝑋 ∩  𝑌 )  +  𝑑
–

(𝑋 ∪ 𝑌 ) 



Proof of the commitment lemma 

Step 2:  

Using the condition established in Step 1,  derive the 

strong feasibility of 𝑉 from that of 𝑈. 

Step 1:  

Let 𝑈 and 𝑉 as in the lemma.  Then, 𝑑
–

𝑉 ≤  𝑑
–

(𝑋)  

holds for every 𝑋 such that 𝑈  𝑋  𝑉. (Even if 𝑋 is not 

feasible.) 



Step 2 of the proof 

 Assumptions: 

𝑈 ⊂ 𝑉, 

𝑈 is strongly feasible, 𝑉 is feasible, and 

𝑑
–

𝑉 ≤  𝑑
–

(𝑋)  for every 𝑋 such that 𝑈  𝑋  𝑉. 

  Goal: 𝑉 is also strongly feasible  

𝑈 
𝑉 



Step 2 of the proof 

 Assumptions: 

𝑈 is strongly feasible, 𝑉 is feasible, and 

𝑑
–

𝑉 ≤  𝑑
–

(𝑋)  for every 𝑋 such that 𝑈  𝑋  𝑉. 

 

 Goal: 𝑉 is also strongly feasible  

𝑈 
𝑉 

 𝜎 : 𝑘-feasible  



Step 2 of the proof 

 Assumptions: 

𝑉 is feasible, and 

𝑑
–
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𝑈 
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 𝜎 : 𝑘-feasible  
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Step 2 of the proof 

 Assumptions: 

𝑉 is feasible, and 

𝑑
–

𝑉 ≤  𝑑
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𝑈 
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 𝜎 : 𝑘-feasible  

 𝛼 
 𝑘-feasible  



Step 2 of the proof 

 𝑑
–

𝑉 ≤  𝑑
–

(𝑋)  for every 𝑋 such that 𝑈  𝑋  𝑉. 

  Goal:𝑑
–

𝐴 ≤ 𝑘 for each superset 𝐴 of 𝑉 that is the vertex 
set of some prefix of 𝛼 

 

 
𝑈 

𝑉 

 𝜎 : 𝑘-feasible  

 𝛼 
𝐴 



Step 2 of the proof 

𝑑
–

𝑉 ≤  𝑑
–

(𝑋)  for every 𝑋 such that 𝑈  𝑋  𝑉. 

 
  Goal:  𝑑

–
𝐴 ≤ 𝑘 

 

 𝜎 : 𝑘-feasible  

 𝛼 
𝐴 

 𝐵:  the vertex set of the minimal prefix of𝜎 such that  

𝐵 ∖ 𝑉 = 𝐴 ∖ 𝑉 

 

𝐵 



Step 2 of the proof 

𝑑
–

𝑉 ≤  𝑑
–

(𝑋)  for every 𝑋 such that 𝑈  𝑋  𝑉. 

 
  Goal:  𝑑

–
𝐴 ≤ 𝑘 

 

 𝜎 : 𝑘-feasible  

 𝛼 
𝐴 

By submodularity: 

𝑑
–

𝑉 + 𝑑
–

𝐵 ≥ 𝑑
–

(𝑉 ∩ 𝐵) + 𝑑
–

(𝑉 ∪ 𝐵) 

 

𝐵 

𝐴 𝑋 



Step 2 of the proof 
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 𝜎 : 𝑘-feasible  

 𝛼 
𝐴 

By submodularity: 

𝑑
–

𝑉 + 𝑑
–

𝐵 ≥ 𝑑
–

(𝑉 ∩ 𝐵) + 𝑑
–

(𝑉 ∪ 𝐵) 

 

𝐵 

𝐴 𝑋 

≤ 𝑘 ≥ 𝑑
–

𝑉  



Step 2 of the proof 

  Goal:  𝑑
–

𝐴 ≤ 𝑘  : established 

 ⇒ 𝛼 is 𝑘-feasible  ⇒ 𝑉 is strongly feasible 

 

 𝜎 : 𝑘-feasible  

 𝛼 
𝐴 

By submodularity: 

𝑑
–

𝑉 + 𝑑
–

𝐵 ≥ 𝑑
–

(𝑉 ∩ 𝐵) + 𝑑
–

(𝑉 ∪ 𝐵) 

 

𝐵 

𝐴 𝑋 

≤ 𝑘 ≥ 𝑑
–

𝑉  



Open problems 

Is directed-pathwidth FPT, i.e., has an 𝑓 𝑘 𝑛𝑂(1) time 

algorithm? 

Are directed-treewidth, D-width, Dag-width, and 

Kelly-width in XP, i.e., has an 𝑛𝑂 𝑘  time algorithm? 

More applications? 


