A polynomial time algorithm for
bounded directed pathwidth

Hisao Tamaki
Meiji University

Directed pathwidth/decomposition
G A directed path-decomposition of G

O 1 3 4
O

© O OO OMI©,
bgh ssess

1. foreachveV(G),I,={i|v € X;}is asingle non-
empty interval

2. for each directed edge (u,v) there is a pair i < j such
that u € X; and v € X;

Undirected
Directed pathwidth/decomposition

G A directed path-decomposition of G

O 1 3 4
O

© O OO OMI©,
bgh ssess

1. foreachveV(G),I,={i|v € X;}is asingle non-
empty interval

{u, v} some i
2. for each directed edge (u,v) there is a pair i < j such

that %V € Xiy € X; and v € X;

Directed pathwidth/decomposition
G A directed path-decomposition of G

1. foreachveV(G),I,={i|ve€X}is asingle non-
empty interval

@@@@
O OO OO

2. for each directed edge (u,v) there is a pair i < j such
that u € X; and v € X;

Directed pathwidth/decomposition
A directed path-decomposition of G

1. foreachveV(G),I,={i|ve€X}is asingle non-
empty interval

2. for each directed edge (u,v) there is a pair i < j such
that u € X; and v € X;

Directed pathwidth/decomposition
A directed path-decomposition of G

1. foreachveV(G),I,={i|ve€X}is asingle non-
empty interval

2. for each directed edge (u,v) there is a pair i < j such
that u € X; and v € X;

Directed pathwidth/decomposition
G A directed path-decomposition of G

o 1 LR bE
pgh setne

1. foreachveV(G),I,={i|ve€X}is asingle non-
empty interval

2. for each directed edge (u,v) there is a pair i < j such
that u € X; and v € X;

Directed pathwidth/decomposition
G A directed path-decomposition of G

bs esses

1. foreachveV(G),I,={i|ve€X}is asingle non-
empty interval

2. for each directed edge (u,v) there is a pair i < j such
that u € X; and v € X;

Directed pathwidth/decomposition
G A directed path-decomposition of G

() i 3 4
O

© OO =D G
pgh gzszs

1. foreachveV(G),I,={i|ve€X}is asingle non-
empty interval

2. for each directed edge (u,v) there is a pair i < j such
that u € X; and v € X;

Directed pathwidth/decomposition
A directed path-decomposition of G

1. foreachveV(G),I,={i|ve€X}is asingle non-
empty interval

2. for each directed edge (u,v) there is a pair i < j such
that u € X; and v € X;

Directed pathwidth/decomposition
G A directed path-decomposition of G

O OO OCOINO©,
@ @ O O ®

1. foreachveV(G),I,={i|ve€X}is asingle non-
empty interval

2. for each directed edge (u,v) there is a pair i < j such
that u € X; and v € X;

Directed pathwidth/decomposition
G A directed path-decomposition of G

ONCION OO
O OINOINOINO,

dpw(G) =1 width = 1

The width of a directed path-decomposition is
max; | X;| - 1.

The directed pathwidth of G is the minimum w such that
there is a directed path-decomposition of G of width w.

Observation 1

The problem of deciding the directed-pathwidth is a
generalization of that of deciding the pathwidth.

G: undirected graph
G": digraph with a pair of anti-parallel edges for each edge of G

G G’
i<j|) s

The condition for a path-decomposition of G

= the condition for a directed path-decomposition of G’

Observation 2

A directed path decomposition represents a linear system
of dicuts.

Observation 2

A directed path-decomposition represents a linear system
of dicuts of size at most the width.

Some facts on directed pathwidth

Introduced by Reed, Seymour, and Thomas in mid 90's.

Relates to directed treewidth [Johnson, Robertson, Seymour
and Thomas 01], D-width [Safari 05], Dag-width
[Berwanger, Dawar, Hunter & Kreutzer 05, Obdrzalek 06],
and Kelly-width[Hunter & Kreutzer 07] as pathwidth relates
to treewidth.

For digraphs of directed pathwidth w, some problems including

directed Hamiltonian cycle can be solved in n°™) time
[JRSTO1].

Used in a heuristic algorithm for enumerating attractors of
boolean networks [Tamaki 10].

Complexity
Input: positive integer k and graph (digraph) G
Question: Is the (directed) pathwidth of G at most £?

NP-complete for the undirected case [Kashiwabara & Fujisawa
79] and hence for the directed case.

Undirected pathwidth is fixed parameter tractable:
f()n°D time: graph minor theorem
20(k*) n time: [Bodlaender 96, Bodlaender & Kloks 96]
Directed pathwidth is open for FPT

Even for k = 2, no polynomial time was previously known.

Result

An 0(mn**1) time algorithm for deciding if the
directed pathwidth is < k (and constructing the
associated decomposition) for a digraph of n
vertices and m edges.

Note This algorithm is extremely simple, easy to
implement, and useful even for undirected
pathwidth/-decomposition

(the linear time algorithm of Bodlaender depends
exponentially on &3)

Notation

G : digraph, fixed
n =|V(G)|
m = |E(G)]
N X)={ueX|(wv)eEE(G)v €X)
: set of in-neighbors of X V' (G)
d (X) = |N (X)| : in-degree of X cV(G)
%(G): the set of all non-duplicating sequences of

vertices of G

V (o) : the set of vertices appearing in 0 €X(G)

Directed vertex separation number

A vertex sequence o € X(G) is k-feasible if
d~(V(1)) < k for every prefix tof o.
The directed vertex separation number of G:
dvsn(G)
=min{ k |0 € 2(G): V(o) = V(G)and o is k-feasible}

Fact: dvsn(G) = dpw(G)
The conversion from a vertex separation sequence to a
directed path-decomposition is straightforward.

Search tree for k-feasible sequences

(.Yl

MC’}Z
{ab} € 2 € {de}?

{a)ﬁc} {a)(c}?’ {,d} 3 {a>ﬁe}3 {Cde}1

{b C, d e}
Vertex sets in the search N /

tree are feasible. {a,b,c,d,e}?

Those leading to a solution
are strongly feasible.

Commitment: a special case

Ud

‘ Adding v does not increase the indegree.

Uu {v} =4

Is it safe to commit to this child?
In other words, is it true that
if U is strongly feasible then U U {v}is?

Commitment: a special case

Ud

‘ Adding v does not increase the in-degree.

Uu {v} =4

Is it safe to commit to this child?
In other words, is it true that
if U is strongly feasible then U U {v} is?

YES, in a more genral form

Commitment in general form
[J d

- |
-
- [

V’ >d I
|

y <d First decsendant with the same or smaller
in-degree.

Commitment lemma

Let U c V both feasible and suppose:

1. d~(V) <d (U),

2. d~(V") >d~(U) for every feasible proper
superset V' of U strictly smaller than V, and

3. U is strongly feasible.

Then V is strongly feasible.

Search tree pruning based on commitment

When a node has a descendant to which it can commit,
all other descendants are removed from the tree.

Effectively, branching occurs only when the in-degree
Increases.

The pruned tree behaves like a depth k tree ina
fuzzy sense.

Can show, with some technicality, that the size of the
pruned tree is at most n*1

Proof of the commitment lemma

Fact:

The in-degree function d is submodular:

for every pair of subsets X,Y < V (G),

d X)+d Y)=dXnY)+d (XUY)

Proof of the commitment lemma

Step 1

Let U and V as in the lemma. Then, d (V) < d (X)
holds for every X such that U c X < V. (Even if X is not
feasible.)

Step 2:

Using the condition established in Step 1, derive the
strong feasibility of V from that of U.

Step 2 of the proof

Assumptions:
UclV,
U is strongly feasible, v is feasible, and
d (V)< d (X) forevery xsuch that U c X c V.

Goal: V is also strongly feasible

Step 2 of the proof

Assumptions:

U is strongly feasible, v is feasible, and
d (V)< d (X) forevery xsuchthatUc X cV.

Goal: V is also strongly feasible

@0 ©@ @ 200 @ @@ @ 0 k-feasible

Step 2 of the proof

Assumptions:
V is feasible, and
d (V)< d (X) forevery xsuchthatUc X cV.

Goal: a is k-feasible

1/

SEERSANS S

Step 2 of the proof

Assumptions:
vV is feasible, and
d (V)< d (X) forevery xsuchthatUc X cV.

Goal: a is k-feasible

easible

é;f:_;[]:%:\:\: I Z: k-feasible

Step 2 of the proof

d (V) < d (X) forevery xsuchthatUcXcV.

Goal:d (A) < k for each superset A of V that is the vertex
set of some prefix of a

1/
4

@0 ©@ @ 0@ @ @ @@ o k-feasible
Qooo:ﬁ\oi a

2

Step 2 of the proof

d (V) < d (X) forevery xsuch that U c X c V.

Goal: d (4A) <k

B: the vertex set of the minimal prefix ofo such that
B\V=A\V

D

oo e o eee o> @ @ o:k-feasible
Qoooh%\‘oi a

A

Step 2 of the proof

d (V) < d (X) forevery xsuch that U c X c V.

Goal: d (4A) <k

By submodularity: ¥ 4

d V)+d (B)=d (WnB)+d (VUB)

D

oo e o eee o> @ @ o:k-feasible
Qoooh%\‘oi a

A

Step 2 of the proof

d (V)< d (X) forevery xsuchthatUcXcV.

Goal: d (4A) <k

By submodularity: ¥ 4

d V)+d (B)=d (WnB)+d (VUB)
<k >d (V)

D

Coee o o qee o> @ @ o:k-feasible
Qooc%\ol a

A

Step 2 of the proof

Goal: d (A) < k : established

= «ais k-feasible = V is strongly feasible

By submodularity: ¥ 4

d V)+d (B)=d (WnB)+d (VUB)
<k >d (V)

D

oo e o eee o> @ @ o:k-feasible
Qoooh%\‘oi a

A

Open problems

Is directed-pathwidth FPT, i.e., has an f(k)n°® time
algorithm?

Are directed-treewidth, D-width, Dag-width, and
Kelly-width in XP, i.e., has an n°® time algorithm?

More applications?

