On computing an optimal semi-matching

František Galčík

joint work with

Ján Katrenič and Gabriel Semanišin

P.J. Šafárik University in Košice, Slovakia

WG2011: June 23, 2011

A 3 b

ъ

→ Ξ → → Ξ

э

Motivation

<ロ> (四) (四) (三) (三) (三)

Semi-matchings

Semi-matching in a bipartite graph G = (U, V, E):

- any subset $M \subseteq E$ such that $deg_M(u) \leq 1$ for all $u \in U$
- each task is assigned to at most one machine

Maximum semi-matching - maximizes the number of assigned tasks; if there is *no other restriction* then

- any subset $M \subseteq E$ such that $deg_M(u) = 1$ for all $u \in U$
- always exists, many maximum semi-matchings

Which semi-matching is better?

Workload distribution (sorted loads): 4, 2, 0, 0, 0

Which semi-matching is better?

Workload distribution (sorted loads): 2, 2, 1, 1, 0

Cost of a semi-matching *M* (the total completition time):

$$cost(M) = \sum_{v \in V} \frac{deg_M(v).(deg_M(v)+1)}{2}$$

Optimal semi-matching

- a maximum semi-matching M such that cost(M) is minimal
- a maximum semi-matching *M* such that its degree (workload) distribution is lexicographically minimal
 - shown by Bokal et al. to be equivalent with *cost*-minimal semi-matching (and also other cost measures)
 - in the previous example: (4,2,0,0,0) vs. (2,2,1,1,0)

Our optimality criterion: lexicographical minimality

くロト くぼト くほと くほと

Algorithms for computing an optimal semi-matchings:

- $O(n^3)$ by Horn (1973) and Bruno et al. (1974)
- $O(n \cdot m)$ by Lovász et al. (2006, JAlgor)
- $O(\min\{n^{3/2}, m \cdot n\} \cdot m)$ by Lovász et al. (2006, JAlgor)
- $O(n \cdot m)$ by Bokal et al. (2009) for generalized setting
- $O(\sqrt{n} \cdot m \cdot \log n)$ by Fakcharoenphol et al. (2010, ICALP)

Algorithms are based on finding (cost-reducing) alternating paths with some properties.

Maximum matchings in bipartite graphs:

- $O(\sqrt{n} \cdot m)$ by Micali and Vazirani (1980)
- O(n^ω) by Mucha and Sankowski (2004)
 - ω is the exponent of the best known matrix multiplication algorithm

御 ト イヨ ト イヨ ト ・ヨ ・ つくぐ

• randomized algorithm, better for dense graphs

Can we construct an algorithm for computing an optimal semi-matching that breaks through $O(n^{2.5})$ barrier for dense graphs?

Answer: YES, we can

And moreover (side results):

- new approach for computing an optimal semi-matching: divide and conquer strategy instead of cost-reducing alternating paths
 - divide and conquer = more suitable for parallel computation
- **reduction** to a variant of *maximum bounded-degree semi-matching*
 - can be solved by different algorithms and approaches (e.g. maximum matchings, reduction to matrix multiplication)

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Limited workload for V-vertices

Restriction: a machine can process only limited number of tasks, e.g. 1 task:

Intuition:

- there can be unassigned tasks
 - U-vertices not incident to a matching edge
- larger workload limit for machines = more assigned tasks

Limited workload for V-vertices

Maximum semi-matching with workload limit 6 (max. 6 tasks per machine):

Is it necessary to increase workload limit for all *V*-vertices (machines) in order to match all *U*-vertices?

Intuition related to limited workload

 no sense to increase the workload limit for vertices (machines) that are not fully loaded in a given maximum semi-matching

Are all fully-loaded vertices good candidates?

 no sense to increase the workload limit for fully loaded vertices (machines) that are endpoints of an alternating path starting in a non-fully loaded vertex

Intuition: How to divide the problem

Maximum semi-matching *M* respecting a workload limit *cut*:

Find an optimal semi-matching

• in $G^- = (U^-, V^-, E^-)$ by "decreasing" workload limits

• in $G^+ = (U^+, V^+, E^+)$ by "increasing" workload limits

코 에 세 코 어

LSM(G) - a set of all optimal semi-matchings for G

Input/problem instances: (G, down, up, M_f)

- an input bipartite graph G = (U, V, E) such that
 - $\forall M \in LSM(G), \forall v \in V : down \leq deg_M(v) \leq up$
- a semi-matching M_f in G such that
 - $\forall v \in V : deg_{M_f}(v) \ge down$

Goal: if $(G, down, up, M_f)$ is an input, compute an optimal semi-matching for G

Starting point: $(G, 0, \infty, \emptyset)$

- *G* is a graph, in which we want to find an optimal semi-matching
- all preconditions are satisfied

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

LSM(G) - a set of all optimal semi-matchings for G

Input/problem instances: (G, down, up, M_f)

- an input bipartite graph G = (U, V, E) such that
 - $\forall M \in LSM(G), \forall v \in V : down \leq deg_M(v) \leq up$
- a semi-matching M_f in G such that
 - $\forall v \in V : deg_{M_f}(v) \ge down$

Divide phase for *cut* (*down* \leq *cut* \leq *up*):

$$(G, down, up, M_f)$$

$$(G^-, down, cut, M_f^-) (G^+, cut, up, M_f^+)$$

Key property:

• $\forall M^- \in LSM(G^-), \forall M^+ \in LSM(G^+): M^- \cup M^+ \in LSM(G)$

프 () () 프 ()

Trivial case (or why is *M_f* required)

Input: $(G, down, up, M_f)$, where $up - down \le 1$ **Problem**: How to compute $M \in LSM(G)$?

First idea:

- compute a maximum semi-matching M for load limit up
- it can happen that $M \notin LSM(G)$:

• $(3,2,2,2,2,2) \in LSM(G)$ vs. $(3,3,3,3,1,0) \notin LSM(G)$

Solution:

• utilizing M_f with $deg_{M_f}(v) \ge down$ for all $v \in V$, transform semi-matching M to a semi-matching M_B such that

• |*M*| = |*M*_B|

- $down \leq deg_{M_B}(v) \leq up$ for all $v \in V$
- it can be shown that $M_B \in LSM(G)$
- transformation can be realized in the linear time

ヘロア 人間 アメヨア 人口 ア

Input instance: (G, down, up, M_f)

Computation:

- compute a maximum semi-matching *M* for workload limit cut
- compute M_B by rebalancing M with respect to M_f
- compute V⁻, V⁺, U⁻, and U⁺ considering workload of V-vertices
- Compute induced subgraphs $G^- = (U^-, V^-, E^-)$ and $G^+ = (U^-, V^+, E^+)$
- compute $M_f^- = M_B \cap E^-$ and $M_f^+ = M_B \cap E^+$
- return $(G^-, down, cut, M_f^-)$ and (G^+, cut, up, M_f^+)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Main algorithm - Divide and conquer

Computational tree starting with $(G, 0, \infty, \emptyset)$:

- Divide and conquer: (*down*, *up*) is always divided into 2 subintervals (of almost equal size)
- Doubling: $(down, \infty)$ is divided to $(down, 2 \cdot down)$ and $(2 \cdot down, \infty)$

프 🖌 🛪 프 🕨

Main algorithm - Computation

Computational tree starting with $(G, 0, \infty, \emptyset)$:

• after O(log n) levels, graphs of subproblems are empty

• there is no subgraph of *G* for which a semi-matching with load of a *V*-vertex at least *n* + 1 exists

★ 문 ► ★ 문 ►

Maximum semi-matching with workload limits?

• in each step of the algorithm, we need a maximum semi-matching that respects the workload limits

Problem (Bounded-degree semi-matching)

Instance: A bipartite graph G = (U, V, E) with n = |U| + |V| vertices and m = |E| edges; a capacity mapping $c : V \to \mathbb{N}$ satisfying $\sum_{v \in V} c(v) \le 2 \cdot n$.

Question: Find a semi-matching M in G with maximum number of edges such that $deg_M(v) \le c(v)$ for all $v \in V$.

Time complexity notation: $T_{BDSM}(n, m)$ for a graph *n* vertices and *m* edges.

Total time for computing an optimal semi-matching:

 $O((n+m+T_{BDSM}(n,m)) \cdot \log n)$

- 本語 医 本語 医 三語

Bounded-degree semi-matching

Reduction to maximum matching:

- make c(v) copies of each V-vertex v
- new graph has at most 3 · n vertices
- apply algorithm for maximum matching in O(n^{\u03c6}) by Mucha and Sankowski

$O(n^{\omega} \cdot \log n)$

Reduction to (1, c)-semi-matchings:

- (1, c)-semi-matching is bounded-degree semi-matching without condition ∑_{v∈V} c(v) ≤ 2 · n
- due to algorithm by Katrenič and Seminišin,
 (1, c)-semi-matching can be computed in time O(√n · m)

 $O(\sqrt{n} \cdot m \cdot \log n)$

・ロン ・聞 と ・ ヨ と ・ ヨ と …

- algorithm for computing an optimal semi-matching in time $O(n^{\omega})$ with high probability
 - since $\omega \le 2.38$, this algorithms breaks through $O(n^{2.5})$ barrier for **dense graphs**
- **new algorithm** for computing an optimal semi-matching based on **divide and conquer strategy** and working in time $O(\sqrt{n} \cdot m \cdot \log n)$
 - divide and conquer strategy promises efficient parallelization

ヘロン 人間 とくほ とくほ とう

э.

Thank you for your attention

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

< ∃→

2