
On computing an optimal semi-matching

František Galčík

joint work with

Ján Katrenič and Gabriel Semanišin
P.J. Šafárik University in Košice, Slovakia

WG2011: June 23, 2011

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Motivation

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Motivation

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Motivation

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Motivation

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Semi-matchings

Semi-matching in a bipartite graph G = (U,V ,E):
any subset M ⊆ E such that degM(u) ≤ 1 for all u ∈ U
each task is assigned to at most one machine

Maximum semi-matching - maximizes the number of
assigned tasks; if there is no other restriction then

any subset M ⊆ E such that degM(u) = 1 for all u ∈ U
always exists, many maximum semi-matchings

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Which semi-matching is better?

Workload distribution (sorted loads): 4, 2, 0, 0, 0

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Which semi-matching is better?

Workload distribution (sorted loads): 2, 2, 1, 1, 0

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Optimal semi-matchings

Cost of a semi-matching M (the total completition time):

cost(M) =
∑
v∈V

degM(v).(degM(v) + 1)
2

Optimal semi-matching
a maximum semi-matching M such that cost(M) is minimal
a maximum semi-matching M such that its degree
(workload) distribution is lexicographically minimal

shown by Bokal et al. to be equivalent with cost-minimal
semi-matching (and also other cost measures)
in the previous example: (4,2,0,0,0) vs. (2,2,1,1,0)

Our optimality criterion: lexicographical minimality

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Previous work

Algorithms for computing an optimal semi-matchings:
O(n3) by Horn (1973) and Bruno et al. (1974)
O(n ·m) by Lovász et al. (2006, JAlgor)
O(min{n3/2,m · n} ·m) by Lovász et al. (2006, JAlgor)
O(n ·m) by Bokal et al. (2009) for generalized setting
O(
√

n ·m · log n) by Fakcharoenphol et al. (2010, ICALP)

Algorithms are based on finding (cost-reducing) alternating
paths with some properties.

Maximum matchings in bipartite graphs:
O(
√

n ·m) by Micali and Vazirani (1980)
O(nω) by Mucha and Sankowski (2004)

ω is the exponent of the best known matrix multiplication
algorithm
randomized algorithm, better for dense graphs

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Our work

Can we construct an algorithm for computing an optimal
semi-matching that breaks through O(n2.5) barrier for dense

graphs?

Answer: YES, we can

And moreover (side results):
new approach for computing an optimal semi-matching:
divide and conquer strategy instead of cost-reducing
alternating paths

divide and conquer = more suitable for parallel computation
reduction to a variant of maximum bounded-degree
semi-matching

can be solved by different algorithms and approaches (e.g.
maximum matchings, reduction to matrix multiplication)

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Limited workload for V -vertices

Restriction: a machine can process only limited number of
tasks, e.g. 1 task:

Intuition:
there can be unassigned tasks

U-vertices not incident to a matching edge

larger workload limit for machines = more assigned tasks

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Limited workload for V -vertices

Maximum semi-matching with workload limit 6
(max. 6 tasks per machine):

Is it necessary to increase workload limit for all V -vertices
(machines) in order to match all U-vertices?

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Intuition related to limited workload

no sense to increase the workload limit for vertices
(machines) that are not fully loaded in a given maximum
semi-matching

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Are all fully-loaded vertices good candidates?

no sense to increase the workload limit for fully loaded
vertices (machines) that are endpoints of an alternating
path starting in a non-fully loaded vertex

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Intuition: How to divide the problem

Maximum semi-matching M respecting a workload limit cut :

Find an optimal semi-matching
in G− = (U−,V−,E−) by "decreasing" workload limits
in G+ = (U+,V+,E+) by "increasing" workload limits

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

(Sub)problem instances

LSM(G) - a set of all optimal semi-matchings for G

Input/problem instances: (G,down,up,Mf)

an input bipartite graph G = (U,V ,E) such that
∀M ∈ LSM(G),∀v ∈ V : down ≤ degM(v) ≤ up

a semi-matching Mf in G such that
∀v ∈ V : degMf (v) ≥ down

Goal: if (G,down,up,Mf) is an input, compute an optimal
semi-matching for G

Starting point: (G,0,∞, ∅)
G is a graph, in which we want to find an optimal
semi-matching
all preconditions are satisfied

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

(Sub)problem instances

LSM(G) - a set of all optimal semi-matchings for G

Input/problem instances: (G,down,up,Mf)

an input bipartite graph G = (U,V ,E) such that
∀M ∈ LSM(G),∀v ∈ V : down ≤ degM(v) ≤ up

a semi-matching Mf in G such that
∀v ∈ V : degMf (v) ≥ down

Divide phase for cut (down ≤ cut ≤ up):

(G,down,up,Mf)
↙ ↘

(G−,down, cut ,M−f) (G+, cut ,up,M+
f)

Key property:
∀M− ∈ LSM(G−), ∀M+ ∈ LSM(G+): M− ∪M+ ∈ LSM(G)

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Trivial case (or why is Mf required)

Input: (G,down,up,Mf), where up − down ≤ 1
Problem: How to compute M ∈ LSM(G)?

First idea:
compute a maximum semi-matching M for load limit up
it can happen that M /∈ LSM(G):

(3,2,2,2,2,2) ∈ LSM(G) vs.(3,3,3,3,1,0) /∈ LSM(G)

Solution:
utilizing Mf with degMf (v) ≥ down for all v ∈ V , transform
semi-matching M to a semi-matching MB such that

|M| = |MB|
down ≤ degMB (v) ≤ up for all v ∈ V

it can be shown that MB ∈ LSM(G)

transformation can be realized in the linear time

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Dividing subroutine - idea

Input instance: (G,down,up,Mf)

Computation:
1 compute a maximum semi-matching M for workload limit

cut
2 compute MB by rebalancing M with respect to Mf
3 compute V−, V+, U−, and U+ considering workload of

V -vertices
4 compute induced subgraphs G− = (U−,V−,E−) and

G+ = (U−,V+,E+)

5 compute M−f = MB ∩ E− and M+
f = MB ∩ E+

6 return (G−,down, cut ,M−f) and (G+, cut ,up,M+
f)

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Main algorithm - Divide and conquer

Computational tree starting with (G,0,∞, ∅):

Divide and conquer: (down,up) is always divided into 2
subintervals (of almost equal size)
Doubling: (down,∞) is divided to (down,2 · down) and
(2 · down,∞)

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Main algorithm - Computation

Computational tree starting with (G,0,∞, ∅):

after O(log n) levels, graphs of subproblems are empty
there is no subgraph of G for which a semi-matching with
load of a V -vertex at least n + 1 exists

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Maximum semi-matching with workload limits?

in each step of the algorithm, we need a maximum
semi-matching that respects the workload limits

Problem (Bounded-degree semi-matching)

Instance: A bipartite graph G = (U,V ,E) with n = |U|+ |V |
vertices and m = |E | edges; a capacity mapping c : V → N
satisfying

∑
v∈V c(v) ≤ 2 · n.

Question: Find a semi-matching M in G with maximum number
of edges such that degM(v) ≤ c(v) for all v ∈ V.

Time complexity notation: TBDSM(n,m) for a graph n vertices
and m edges.

Total time for computing an optimal semi-matching:

O((n + m + TBDSM(n,m)) · log n)

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Bounded-degree semi-matching

Reduction to maximum matching:
make c(v) copies of each V -vertex v
new graph has at most 3 · n vertices
apply algorithm for maximum matching in O(nω) by Mucha
and Sankowski

O(nω · log n)

Reduction to (1, c)-semi-matchings:
(1, c)-semi-matching is bounded-degree semi-matching
without condition

∑
v∈V c(v) ≤ 2 · n

due to algorithm by Katrenič and Seminišin,
(1, c)-semi-matching can be computed in time O(

√
n ·m)

O(
√

n ·m · log n)

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Conclusion

algorithm for computing an optimal semi-matching in time
O(nω) with high probability

since ω ≤ 2.38, this algorithms breaks through O(n2.5)
barrier for dense graphs

new algorithm for computing an optimal semi-matching
based on divide and conquer strategy and working in
time O(

√
n ·m · log n)

divide and conquer strategy promises efficient
parallelization

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

Thank you for your attention

F. Galčík, J. Katrenič, G. Semanišin On computing an optimal semi-matching

