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Outline

Why are Interval graphs easy?

Representative-size.
Graph classes with bounded representative-size.
Application of our results.
Conclusion and future research.
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Interval graphs

A collection of intervals of the real line.

Represent each interval by a node.
If intervals intersect, their nodes are neighbours.
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Dynamic programming on Interval graphs

Go through intervals from left to right.
Keep all the possibly optimal partial solutions.
Two solutions will be equivalent if they have the
same neighbourhood across the cut.
There is at most n different neighbourhoods.
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Representative-size

Definition (for a set)
Consider a cut A,B of a graph, and S ⊆ A, then the
representative-size of S with respect to A is the min-
imum size of S′ ⊆ S such that N(S)∩B = N(S′)∩B.
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Representative-size

Definition (for a cut)
Consider a cut (A,B) of a graph, then the
representative-size of (A,B) is the maximum
representative-size over all S ⊆ A with respect to A.
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Representative-size

Definition (for a graph, linear version)
A graph G = (V ,E) has representative-size r if one
can order the vertices such that for every i the
representative-size of (Ai ,V \Ai) is at most r , where
Ai is the set containing the i first vertices.

Belmonte, Vatshelle (UiB) Structured neighbourhoods June 22, 2011 7 / 21



trees

cographs

threshold

trivially perfect

interval

unit interval

distance hereditary

bipartite permutation

Dilworth 4

Dilworth 2

biconvex

convex

permutation

Dilworth k

perfect

comparability

co−comparability

chordal

split

circular arc

trapezoid

k−trapezoid

circular k−trapezoid

tolerance

circular permutation

strongly chordal

bipartitecircle

co−k−degenerate

I

II

III

IV

k−tree, fixed k

k−polygon

bounded tolerance



Applications of our results

The graph width parameter Boolean-width was
introduced by Bui-Xuan, Telle and Vatshelle
[IWPEC 2009]
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Applications of our results

The graph width parameter Boolean-width was
introduced by [BTV’09]
representative-size r ⇒ boolean-width ≤ r ∗ log(n)

INDEPENDENT SET and DOMINATING SET can be
solved in cboolean−width(G) ∗poly(n) time [BTV’09]

Theorem
INDEPENDENT SET and DOMINATING SET can be
solved in polynomial time on graphs of bounded
representative-size.
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VERTEX PARTITIONING PROBLEMS

The VERTEX PARTITIONING problems was introduced
by Telle and Proskurowski. [JDM 1997]
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VERTEX PARTITIONING PROBLEMS

The VERTEX PARTITIONING problems by [TP’97]

A B

INDEPENDENT SET:

We ask for a partition into (A,B) maximizing |A|.
Such that every node in A has 0 neighbours in A.
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VERTEX PARTITIONING PROBLEMS

The VERTEX PARTITIONING problems by [TP’97]

A B
C

3-coloring:

Every node in A has 0 neighbour in A.
Every node in B has 0 neighbour in B.
Every node in C has 0 neighbour in C.
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VERTEX PARTITIONING PROBLEMS

The VERTEX PARTITIONING problems by [TP’97]

In general:

We ask for a partition into p parts maximizing or
minimizing one part.
For each ordered pair of parts we may put a
requirement on the number of neighbours in the
other part.
Requirements can be any finite or co-finite set.
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d-neighbourhood

S
N(S)
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d-neighbourhood

S

≥ 2

1

0
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d-neighbourhood

BTV’09 use the ”number of d-neighbourhoods”,
denoted UNd(G), which is related to
representative-size.

Theorem

UNd ≤ nd ·r
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VERTEX PARTITIONING PROBLEMS

Theorem (ABTRRV, WG2010)
Every vertex partitioning problem can be solved in
time O∗(UN3·p

d )

Corollary
Every vertex partitioning problem can be solved in
time O∗(n3·d ·r ·p)
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Summary of results

The problems:
INDEPENDENT SET, DOMINATING SET,
MAXIMUM INDUCED MATCHING,
PERFECT CODE, k -COLOURING,
H -COVER/HOMOMORPHISM/ROLE ASSIGNMENT.

Are polynomial on:
Interval graphs, circular arc graphs,
permutation graphs, trapezoid graphs,
Dilworth-k graphs, convex graphs ...
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Open problems

What is the representative-size of strongly
chordal and tolerance graphs?
Is there a graph-class with unbounded
representative-size where ever VERTEX

PARTITIONING problem is polynomial?
Can we compute the representative-size?
Can the same ideas be used on directed graphs?
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Thank you!
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