

Parameterized Two-Player Nash Equilibrium

Danny Hermelin, Chien-Chung Huang, Stefan Kratsch, and Magnus Wahlstrom

Bimatrix Game

- Played by two players: Row and Column
 - − Two payoff matrices. $A,B \in Q^{n \times n}$.

0	1	-2	
0	2	2	
1	2	-1	

Row chooses i

Row payoff A[i,j] = -2

0	2	0	
0	-2	2	
1	1	1	
			Ī

Column chooses j

Column payoff B[i,j] = 0

Bimatrix Game

- > Example:
 - Rock, paper, scissors:

		1111	%
	0	-1	1
11111	1	0	-1
\gg	-1	1	0

- This example is a zero-sum game:
 - Row and column payoffs sum up to zero.
- General bimatrix games are not necessarily such.
 - In fact, the interesting cases (to us) are not zero-sum.

Bimatrix Game

- Players can play mixed strategies.
 - Distribution over rows and columns.

Row chooses distribution x

Column chooses distribution y

Row expected payoff
$$x^{T}Ay = 0$$

Column expected payoff
$$x^TBy = 1$$

Nash Equilibrium

➤ Neither player can improve their payoff, assuming the other player plays the same.

0	1	-2	
0	2	2	
1	2	-1	

0	2	0	
0	-2	2	
1	1	1	
			Γ

Not Nash!

Row can improve by switching to row 2.

Nash Equilibrium

➤ Neither player can improve their payoff, assuming the other player plays the same.

0	1	-2	
0	2	2	
1	2	-1	

			L
0	2	0	
0	-2	2	
1	1	1	
			Ī

Nash!

Theorem (Nash): Any bimatrix <u>rational</u> game has a <u>mixed</u> equilibrium.

Computing Nash Equilibrium

- The Nash Equilibrium (NE) problem: Given a bimatrix rational game, find an equilibrium.
- NP-completeness theory does not apply because solution always exists.
- PPAD-complete by a series of papers:
 - Daskalakis, Goldberg, and Papadimitriou [STOC'06,STOC'06].
 - Daskalakis and Papadimitriou [ECCC'05]
 - Chen and Deng [ECCC'05]
 - Chen and Deng [FOCS'06]
- The 3-SAT of algorithmic game theory!

Computing Nash Equilibrium

- Support: Set of strategies played with non-zero probability.
- When support of both players is known, NE is easy.

- Solve LP with the following constraints:
 - $x_s > 0$ ⇒ $(Ay)_s \ge (Ay)_j$ for all $j \ne s$.
 - $y_s > 0$ ⇒ $(x^TB)_s \ge (x^TB)_j$ for all $j \ne s$

Computing Nash Equilibrium

Theorem: NE can be solved in $n^{O(k)}$ time, when the supports of each player are bounded by k.

- Can this be improved substantially?
- Can we remove k out of the exponent?

<u>Theorem (Estivill-Castro, Parsa)</u>: NE cannot be solved in n^{o(k)} time unless FPT=W[1].

<u>GOAL</u>: find interesting special cases that circumvent this

Graph Representation of Bimatrix Games

Bipartite graph on rows and columns

							_	
0	1	-2		0	2	0		
0	2	2	+	0	-2	2	\Rightarrow	
1	2	-1		1	1	1		
		•					•	

(i,j) is an edge \Leftrightarrow A[i,j] \neq 0 or B[i,j] \neq 0

Interesting Special Cases

- 1. I-sparse games:
 - Degrees ≤ I.
- 1. k-unbalanced games:
 - One side has ≤ k vertices.
- 1. Locally bounded treewidth:
 - Every d-neighborhood has treewidth ≤ f(d).
 - Generalizes both previous cases.

previously studied games

Our Results

Theorem: NE in I-sparse games, where the support is bounded by k, can be solved in I^{O(kl)} n^{O(1)} time.

 Without the restriction on the support size the problem is PPADcomplete [Chen, Deng, and Teng '06].

Theorem: NE in k-unbalanced games, where the row player's payoff matrix has I different values, can be solved in I^{O(k f)} n^{O(1)} time.

- General k-sparse games is not known to be FPT.
- But how do we show its not ?

Theorem: NE in locally bounded treewidth games, where the support is bounded by k, and <u>both</u> payoff matrices have I different values, can be solved in f(I, k) $n^{O(1)}$ time for some computable f().

- Recall I := max-degree and k:= support size.
- > Two easy observations:
 - 1. Enough to search for minimal equilibriums.

<u>Definition</u>: An equilibrium (x,y) is $\underline{minimal}$ if for any equilibrium (x',y') with $S(x') \subseteq S(x)$ and $S(y') \subseteq S(y)$, we have S(x') = S(x) and S(y') = S(y).

2. If n > kl, then both players receive non-negative payoffs on any $k \times k$ equilibrium.

If a player get negative payoff and n > kl, there will always be a zero-payoff strategy to switch to.

<u>Definition</u>: The <u>extended support</u> of (x,y) is $S(x) \cup N(S(y))$ for the row player, and $S(y) \cup N(S(x))$ for the column player.

The size of the extended support of each player $\leq k + kl$.

Main technical lemma:

<u>Lemma:</u> If (x,y) is minimal equilibrium, then the subgraph $H \subseteq G$ induced by the extended supports has at most 2 connected components.

Proof sketch:

- 1. Prove separately for the case where $A_{s(x),s(y)} = 0$ and $B_{s(x),s(y)} = 0$, and for the case when one of these matrices is not all-zero.
- 2.In the latter case, normalize probabilities on some connected component of H.
- 3. In the former case, argue the same on G[N(S(x))] and G[N(S(y))].

> Folklore FPT lemma:

Lemma: Let G be a graph on n vertices of maximum degree Δ . Then one can enumerate all induced subgraphs H on h vertices and c connected components in $H \subseteq G$ in $\Delta^{O(h)}$ $n^{O(c)}$ time.

Proof sketch:

- 1. Guess c vertices S in G to be the targets of vertices in different connected components of H.
- 2.Branch on the h-neighborhood of S to enumerate all $H \subseteq G$.
- 3. The size of each branch-tree is $\Delta^{O(h)}$.

> The algorithm:

- 1.Guess the number h of strategies in both extended support.
- 2.Guess the number of connected components $c \in \{1,2\}$ in the corresponding induced subgraph.
- 3.Enumerate all induced subgraphs on h vertices and c connected components.
- 4. For each such subgraph, the supports of both players are known. Thus, one can use LP to determine if it corresponds to an equilbrium.

> Extensions:

- 1.We can improve running-time to $I^{O(kl)}$ $n^{O(1)}$ in case both payoff matrices are non-negative.
- 2. Another route to a well-known PTAS.
- 3. Connectivity lemma can be used to show that the problem has no "polynomial kernel".

Open questions

- 1. k-unbalanced games with an arbitrary number of payoffs.
- 2. Bounded treewidth games with an arbitrary number of payoffs.
- 3. Parameterized analog of the PPAD class.

<u>Conjecture:</u> NE parameterized by k in k-unbalanced games is Para-PPAD-Complete.

