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The splits reconstruction problem

Definition

Let T = (V ,E ) be a tree and ω = V → N be a weight function.
The split of an edge e is the minimum of Ω(T1) and Ω(T2) where

T1 and T2 are the two trees obtained by deleting e from T

Ω(Ti ) =
∑

v∈Ti
ω(v)

S(T ) = {3, 3, 5, 15, 14, 2, 1, 6, 1, 1}
→ We denote the multiset of splits of T by S(T ).
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The splits reconstruction problem

The problem :

Weighted Splits Reconstruction (WSR)

Input : A set V of n vertices, a weight function ω, and
a multiset S of integers.

Question : Is there a tree T whose multiset of splits is S ?

WSRk : Same problem, but T is of maximum degree at most k .

→ The problem is to construct a tree being consistent with both
weights and splits.
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Applications

Applications in chemistry :

Molecules are modeled by graphs in order to study physical
properties.

Chemical graphs : Vertices represent atoms and edges the
chemical bonds.
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A chemical structure and its corresponding labeled graph version.

M. Dehmer, N. Barbarini, K. Varmuza, A. Grabe
Novel topological descriptors for analyzing biological networks

BMC Structural Biology 2010
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Applications

Applications in chemistry :

Within the area of quantitative structure-activity relationship,
several structural measures of chemical graphs were identified
that quantitatively correlate with some defined process
(like biological activity or chemical reactivity).

Widely known example of such measure is the Wiener index :
the sum of the distances between each pair of vertices.

Other measures were introduced and investigated.
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Known results

In 2000, Goldman et al. (SODA 2000) introduced
the Splits Reconstruction problem and recall that the
Wiener index of a tree T on n vertices with unit weights is∑

s∈S(T ) s · (n − s).

As it is not reasonable to construct chemical trees with arbitrary
high vertex degrees, Li and Zhang (2004) studied the restriction to
maximum degree at most 4 (SR4) and show its NP-completeness.
They provided an exponential-time algorithm which creates
weighted vertices in intermediate steps.
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Our results

Since it was proved that SR4 is NP-complete,
and SR2 is trivially polynomial,
it is of interest to know the computational complexity of SR3.

→ We close this gap by showing its NP-completeness.

(The problem is also NP-complete for caterpillars with unbounded hairs.)

Main result : WSR2 is strongly NP-complete.

We also provide a polynomial-time algorithm solving WSR2,
assuming that the number of distinct vertex weights is
constant-bounded.
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Strongly NP-completeness of WSR2
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The weighted splits reconstruction problem on paths

We first restrict our focus to WSR2 :

Weighted Splits Reconstruction for paths.

Splits : 1, 5, 6, 10, 11

Weights : 1, 1, 4, 5, 5, 10

11/41



Introduction Strong NP-completeness of WSR2 An algorithm for WSR2 NP-completeness of SR3 Conclusion

The weighted splits reconstruction problem on paths

We first restrict our focus to WSR2 :

Weighted Splits Reconstruction for paths.

Splits : 1, 5, 6, 10, 11

Weights : 1, 1, 4, 5, 5, 10

1 4 1 5 5 10
1 5 6 11 10

11/41



Introduction Strong NP-completeness of WSR2 An algorithm for WSR2 NP-completeness of SR3 Conclusion

The weighted splits reconstruction problem on paths

We first restrict our focus to WSR2 :

Weighted Splits Reconstruction for paths.

Splits : 1, 5, 6, 10, 11

Weights : 1, 1, 4, 5, 5, 10

1 4 1 5 5 10
1 5 6 11 10

1 5 4 1 10 5
1 6 10 11 5

11/41



Introduction Strong NP-completeness of WSR2 An algorithm for WSR2 NP-completeness of SR3 Conclusion

Strongly NP-completeness of WSR2

To show the NP-completeness of Weighted Splits
Reconstruction for paths, we make a reduction from :

Scheduling With Common Deadlines (SCD)

Input : A set of n jobs with integer lengths and n deadlines.
Question : Can the jobs be scheduled on two processors such
that at each deadline a processor finishes a job, and processors
are never idle between the execution of two jobs ?

Intuition : Simulate the two processors by considering the
sub-path starting from the left endpoint and the sub-path starting
from the right endpoint.

P1 P2
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One may imagine that we want to satisfy delivery deadlines and avoid

using any warehouse space to store a product between its fabrication

and the delivery date.
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Strongly NP-completeness of WSR2

1. SCD ≤p WSR2

2. SCD is NP-complete

“easy”

“much harder”

(Remark : Clearly all these problems belongs to NP.)
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1. SCD ≤p WSR2

Given an instance (j1, . . . , jn; d1 ≤ · · · ≤ dn) for SCD
(ji ’s represent the job lengths ; di ’s represent the deadlines),
we construct an instance for WSR2 as follows :

For each job ji , 1 ≤ i ≤ n,
create a vertex vi with weight ω(vi ) = ji .

For each deadline di , 1 ≤ i ≤ n − 1, create a split di .

W.l.o.g. we assume that
∑n

i=1 ji = dn−1 + dn
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1. SCD ≤p WSR2

“⇐”

Suppose the path P = (vπ(1), vπ(2), . . . , vπ(n)) is a solution to WSR2.

Say {vπ(`), vπ(`+1)} is the edge associated to the split dn−1.

vπ(1) vπ(2) vπ(l) vπ(l+1) vπ(n)

dn-1

P1 P2

vπ(n-1)

We construct a solution for SCD by assigning the jobs
jπ(1), jπ(2), . . . , jπ(`) to processor P1, and the jobs
jπ(n), jπ(n−1), . . . , jπ(`+2), jπ(`+1) to processor P2, in this order.

Note that then, one of the jobs jπ(`), jπ(`+1) ends at dn−1, and the
other at −dn−1 +

∑n
i=1 ji = dn, which is as desired.
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1. SCD ≤p WSR2

“⇒”

On the other hand, if SCD has a solution, then WSR2 has a
solution as well, because the previous construction is easily
inverted.

Visually, the list of jobs of P2 is reversed and appended to the list
of jobs of P1. Job lengths correspond to vertex weights and
deadlines correspond to splits.

(The last deadline where a job from P1 finishes is merged with the
last deadline where a job from P2 finishes.)

Thus,

Theorem

SCD is polynomial-time-reducible to WSR2.
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Strongly NP-completeness of WSR2

1. SCD ≤p WSR2

2. SCD is NP-complete
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2. SCD is NP-complete

To show that SCD is NP-complete, we give a polynomial-time
reduction from dNMTS :

Numerical Matching with Target Sums (NMTS)

Input : 3 multisets A, B, and S = {s1, . . . , sm} of size m from N.
Question : Can A ∪ B be partitioned into m disjoint sets
C1,C2, . . . ,Cm, each containing exactly one element from each of
A and B, such that

∑
c∈Ci

c = si , 1 ≤ i ≤ m ?

NMTS : [SP17] in Garey-Johnson

dNMTS : all integers in A ∪ B ∪ S are pairwise distinct

dNMTS : strongly NP-hard [Hulett, Will, Woeginger, 2008]
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2. SCD is NP-complete
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2. SCD is NP-complete

The full details of a segment :Complexity of Splits Reconstruction for Low-Degree Trees 7

r1,j−1r2,j−1rπ1(j)−1,j−1rπ1(j),j−1 rπ1(j)+1,j−1rn,j−1

f1,j−1f2,j−1 fπ1(j),j−1 fπ1(j)+1,j−1

ds1,j−1

ds2,j−1

ds1,j

ds2,j

xπ1(j) yπ2(j)

. . .
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. . .

. . .
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. . .

. . .

P1

P2

Fig. 1. How jobs are assigned to processors in the SCD instance in segment j < n.

– assign the green x-job xπ1(j) to the interval [ds1,j−1, rπ1(j),j−1] of P1,
– assign the green y-job yπ2(j) to the interval [rπ1(j),j−1, ds1,j ] of P1,
– assign a red fill job of length x1 − 1 to the interval [ds1,j−1, f1,j−1] of P2,
– for every i ∈ {1, . . . , n−1}\π1(j), assign a red fill job of length xi+1−1−xi

to the interval [ri,j−1, fi+1,j−1] of P2,
– for every i ∈ {1, . . . , n}\π1(j), assign a blue job to the interval [fi,j−1, ri,j−1]

of P2,
– assign a red overlap job of length xπ1(j)+1 −xπ1(j) to the interval [fπ1(j),j−1,

fπ1(j)+1,j−1] of P2, and
– assign a black fill job of length zj − xn to the interval [rn,j−1, ds1,j ] of P2.

It only remains to assign jobs to the last segment. The last segment of P1 contains
the green x-job xn and the green y-job yn, in this order. The last segment of
P2 contains a red fill job of length x1 − 1, a blue job, a red fill job of length
x2 − 1− x1, a blue job, . . ., a red fill job of length xn − 1− xn−1, and the black
overlap job, in this order. See Fig. 1 for an illustration.

Now suppose the SCD instance is a Yes-instance. We will show some struc-
tural properties of any valid assignment of jobs to the processors, which will help
to extract a solution for our original dNMTS instance. We will show that in each
segment Ij , any valid solution for the SCD instance has exactly one green x-job
xk and exactly one green y-job y", and xk and y" sum to zj .

Consider a valid assignment of the jobs to the processors P1 and P2. As two
jobs with the same length are interchangeable, when we encounter a job whose
length belongs to more than one category (for example “black fill” and “green
y”) we may choose in this case, w.l.o.g., to which category the job belongs.

Claim 1. A black fill job is assigned to each interval [rn,j , ds1,j+1], j ∈ {0, . . . , n−
2}.
Proof. Let j ∈ {0, . . . , n − 2}. Two jobs must finish at the double deadline
ds1,j+1, ds2,j+1. One of these must start at rn,j and thus has length ds1,j+1 −
rn,j =

∑j+1
k=1 zk − xn −∑j

k=1 zk = zj+1 − xn. So this job is, w.l.o.g., a black fill
job. #$

More deadlines ...

... and thus more jobs.

21/41



Introduction Strong NP-completeness of WSR2 An algorithm for WSR2 NP-completeness of SR3 Conclusion

2. SCD is NP-complete

The reduction from dNMTS needs to scale the numbers of the
given instance to ensure some properties :

for i ∈ {1, . . . , n − 1},
xi := 2 · (ai + (bm + 2)), xn := 2 · (am + 1 + (bm + 2)),

yi := 2 · (bi + 3 · (bm + 2)), yn := 2 · (bm + 1 + 3 · (bm + 2)),

zi := 2 · (si + 4 · (bm + 2)), and zn := 2 · (am + bm + 2 + 4 · (bm + 2)).
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2. SCD is NP-complete

Property

Each element of X ∪ Y ∪ Z is an even positive integer.

Property

For every i ∈ {1, . . . , n − 1}, we have that xi < xi+1,
that yi < yi+1, and that zi < zi+1.

Property

For every i ∈ {1, . . . , n}, we have

2 · bm + 4 ≤ xi ≤ 4 · bm + 4,

6 · bm + 12 ≤ yi ≤ 8 · bm + 14, and

8 · bm + 16 ≤ zi ≤ 12 · bm + 18.

The last property implies
that y1 > xn, that z1 > yn, and that 2 · y1 > zn.
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2. SCD is NP-complete

Property

If k and ` are integers such that xk + y` = zn, then k = ` = n.

Property

Let p, q ∈ X ∪ Y , p ≤ q, and z ∈ Z.
If p + q = z, then p ∈ X and q ∈ Y .

By previous properties :

the sum of any two X -elements is smaller than
any element of Z

the sum of any two Y -elements is larger than
any element of Z
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2. SCD is NP-complete

25/41

Then we create the following deadlines :

real deadlines : ri ,j := xi +
∑j

k=1 zk , for each
j ∈ {0, . . . , n − 1} and each i ∈ {1, . . . , n},
fake deadlines : fi ,j := ri ,j − 1, for each j ∈ {0, . . . , n − 1}
and each i ∈ {1, . . . , n}, and

sum deadlines : two deadlines ds1,j := ds2,j :=
∑j

k=1 zk , for
each j ∈ {1, . . . , n}.

Complexity of Splits Reconstruction for Low-Degree Trees 7
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2. SCD is NP-complete
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And we create the jobs with the following lengths :

green x-jobs : xi , for each i ∈ {1, . . . , n},
green y-jobs : yi , for each i ∈ {1, . . . , n},
blue jobs : n · (n − 1) times a job of length 1,

red fill jobs : n − 1 times a job of length xi − 1− xi−1, for
each i ∈ {1, . . . , n},
red overlap jobs : xi − xi−1, for each i ∈ {1, . . . , n},
black fill jobs : zi − xn for i ∈ {1, . . . , n − 1}, and

a black overlap job : zn − xn + 1.
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overlap job, in this order. See Fig. 1 for an illustration.
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xk and exactly one green y-job y", and xk and y" sum to zj .
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2}.
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k=1 zk = zj+1 − xn. So this job is, w.l.o.g., a black fill
job. #$
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2. SCD is NP-complete

Afterwards we are able to prove a collection of claims which
together show the NP-completeness of SCD.

Theorem

dNMTS ≤p SCD ≤p WSR2

The problem WSR2 is strongly NP-complete.
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An algorithm for WSR2 with few distinct vertex weights
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An algorithm for WSR2 with few distinct vertex weights

We just showed that WSR2 is strongly NP-complete.

Assume that we face an instance with, say k , distinct vertex
weights.

Is it possible to design a polynomial-time algorithm, assuming k is
a constant ?

Main idea : Dynamic Programming
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An algorithm for WSR2 with few distinct vertex weights

Let k = |{ω(v) : v ∈ V }| be the number of distinct vertex
weights.

Let w1 < w2 < · · · < wk denote the distinct vertex weights
and m1,m2, . . . ,mk denote their respective multiplicities, i.e. :

mi = |{v ∈ V : ω(v) = wi}|.

Let S = {s1, s2, . . . , sn−1} be the multiset of splits,
with s1 ≤ s2 ≤ · · · ≤ sn−1.
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An algorithm for WSR2 with few distinct vertex weights

Boolean table :

T[p,WL,WR , v1, v2, . . . , vk ]

being defined for each :
integer p , 1 ≤ p ≤ n − 1

split WL ∈ S
split WR ∈ S

v1 ∈ {0, 1, . . . ,m1}
. . .

vk ∈ {0, 1, . . . ,mk}
set to true iff there is an assignement of the splits s1, s2, . . . , sp to
the ` leftmost edges and the r rightmost edges of the path, s.t. :

p = ` + r
v1 weights w1, v2 weights w2, . . ., vk weights wk are assigned
to the ` leftmost and the r rightmost vertices s.t. each split
assigned to the left (resp. to the right) part of the path
corresponds to the sum of the vertex weights assigned to
vertices to the left (resp. to the right) of this split
WL is equal to the value of the `th split from the left
and WR is equal to the r th split from the right
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An algorithm for WSR2 with few distinct vertex weights

Intuitively, the algorithm assigns splits and weights by starting
from both endpoints of the path and trying to meet these two
sub-solutions.

T[p,WL,WR , v1, v2, . . . , vk ]

WL WR

l r

Base case. T[0,WL,WR , v1, v2, . . . , vk ] is true if
WL = WR = v1 = v2 = . . . = vk = 0 and false otherwise.

Remaining entries are computed by increasing values of p using
the recurrence :

T[p,WL,WR , v1, v2, . . . , vk ] =
k∨

i=1





T[p − 1,WL − wi ,WR , v1, v2, . . . , vi−1,

vi − 1, vi+1, vi+2, . . . , vk ] ∨
T[p − 1,WL,WR − wi , v1, v2, . . . , vi−1,

vi − 1, vi+1, vi+2, . . . , vk ]
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An algorithm for WSR2 with few distinct vertex weights

The final result is computed by evaluating :

∨

WL,WR∈S
i∈{1,2,...,k}

(WL≤wi+WR ) ∧ (WR≤wi+WL)

T[|S|,WL,WR ,m1,m2, . . . ,mi−1,mi − 1,mi+1,mi+2, . . . ,mk ]

Theorem

WSR2 can be solved in time O(nk+3 · k)
where k is the number of distinct vertex weights of any
input instance (V , ω,S) and n is the number of vertices.
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NP-completeness of SR3

1 Definitions and Known Results

2 Strong NP-completeness of WSR2

3 An algorithm for WSR2 with few distinct vertex weights

4 SR3 is NP-complete

5 Conclusion
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NP-completeness of SR3

Here we show that Splits Reconstruction with unit weights is
NP-complete for trees with maximum degree 3.

Again, we do a reduction from :

Numerical Matching with Target Sums (NMTS)

Input : 3 multisets A, B, and S = {s1, . . . , sm} of size m from N.
Question : Can A ∪ B be partitioned into m disjoint sets
C1,C2, . . . ,Cm, each containing exactly one element from each of
A and B, such that

∑
c∈Ci

c = si , 1 ≤ i ≤ m ?

Problem NMTS remains NP-complete even if each integer of the
instance is at most p(m), where p is a polynomial and m is the
length of the description of the instance.
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NP-completeness of SR3

Given an instance (Ã, B̃, S̃), we start by scaling the integers :

Let C = max{x : x ∈ Ã ∪ B̃}.

ai := ãi + 2 + 3C , 1 ≤ i ≤ m,

bi := b̃i + 3 + 5C , 1 ≤ i ≤ m,

si := s̃i + 5 + 8C , 1 ≤ i ≤ m.

It remains to construct an instance (V ,S) of SR3 being a
Yes-instance iff (A,B, S) is a Yes-instance of NMTS.
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NP-completeness of SR3
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Fig. 2. A tree with maximum degree 3 representing a solution to a SR3 instance
constructed as described in the proof of Theorem 3.

Now we describe an instance (V, S) of SR3, which is a Yes-instance iff the
previous instance (A, B, S) of NMTS is a Yes-instance (see also Figure 2).

Let n = 2m−2+
∑m

i=1 ai +
∑m

i=1 bi be the number of vertices in V ; we recall
that they have unit weight. The multiset S of splits is defined as follows.

– For each value si, 1 ≤ i ≤ m, the value 1 + si is added to S and we refer to
these splits as red splits.

– For each value si, 2 ≤ i ≤ m − 2, the value (i − 1) +
∑i

j=1(1 + sj) is added
to S and we refer to these splits as black splits.

– For each value ai, 1 ≤ i ≤ m, the values {1, 2, . . . , ai} are added to S and
we refer to these splits as green splits.

– For each value bi, 1 ≤ i ≤ m, the values {1, 2, . . . , bi} are added to S and we
refer to these splits as blue splits.

Finally each value x of S is replaced by min(x, n − x).

Lemma 3 (!). (A, B, S) is a Yes-instance for NMTS if and only if (V, ω :
V → {1}, S) is a Yes-instance for SR3.

As the certificate is a tree on n vertices, the membership in NP is obvious. $%

5 Freely choosable weights

We remark that the following modification of WSR makes any set of splits
realizable in some tree. Suppose the weight function ω is not given, but freely
choosable, that is, we ask whether, given a multiset S of integers, there exists a
tree T = (V, E) and a weight function ω : V → N, such that S is the multiset of
splits of T . We call this problem ChWSR.

Theorem 4 (!). ChWSR always admits a solution.

Let n = 2m − 2 +
∑m

i=1 ai +
∑m

i=1 bi be the number of vertices with
unit weights. The multiset S of splits is defined as follows :
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NP-completeness of SR3
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Let n = 2m−2+
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i=1 bi be the number of vertices in V ; we recall
that they have unit weight. The multiset S of splits is defined as follows.

– For each value si, 1 ≤ i ≤ m, the value 1 + si is added to S and we refer to
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– For each value si, 2 ≤ i ≤ m − 2, the value (i − 1) +
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j=1(1 + sj) is added
to S and we refer to these splits as black splits.

– For each value ai, 1 ≤ i ≤ m, the values {1, 2, . . . , ai} are added to S and
we refer to these splits as green splits.

– For each value bi, 1 ≤ i ≤ m, the values {1, 2, . . . , bi} are added to S and we
refer to these splits as blue splits.

Finally each value x of S is replaced by min(x, n − x).

Lemma 3 (!). (A, B, S) is a Yes-instance for NMTS if and only if (V, ω :
V → {1}, S) is a Yes-instance for SR3.

As the certificate is a tree on n vertices, the membership in NP is obvious. $%

5 Freely choosable weights

We remark that the following modification of WSR makes any set of splits
realizable in some tree. Suppose the weight function ω is not given, but freely
choosable, that is, we ask whether, given a multiset S of integers, there exists a
tree T = (V, E) and a weight function ω : V → N, such that S is the multiset of
splits of T . We call this problem ChWSR.

Theorem 4 (!). ChWSR always admits a solution.

Let n = 2m − 2 +
∑m

i=1 ai +
∑m

i=1 bi be the number of vertices with
unit weights. The multiset S of splits is defined as follows :

For each value si , 1 ≤ i ≤ m, the value 1 + si is added to S
and we refer to these splits as red splits.
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to S and we refer to these splits as black splits.

– For each value ai, 1 ≤ i ≤ m, the values {1, 2, . . . , ai} are added to S and
we refer to these splits as green splits.

– For each value bi, 1 ≤ i ≤ m, the values {1, 2, . . . , bi} are added to S and we
refer to these splits as blue splits.

Finally each value x of S is replaced by min(x, n − x).

Lemma 3 (!). (A, B, S) is a Yes-instance for NMTS if and only if (V, ω :
V → {1}, S) is a Yes-instance for SR3.

As the certificate is a tree on n vertices, the membership in NP is obvious. $%

5 Freely choosable weights

We remark that the following modification of WSR makes any set of splits
realizable in some tree. Suppose the weight function ω is not given, but freely
choosable, that is, we ask whether, given a multiset S of integers, there exists a
tree T = (V, E) and a weight function ω : V → N, such that S is the multiset of
splits of T . We call this problem ChWSR.

Theorem 4 (!). ChWSR always admits a solution.

Let n = 2m − 2 +
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i=1 ai +
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i=1 bi be the number of vertices with
unit weights. The multiset S of splits is defined as follows :

For each value si , 2 ≤ i ≤ m − 2, the value (i − 1) +
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is added to S and we refer to these splits as black splits.
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Finally each value x of S is replaced by min(x, n − x).

Lemma 3 (!). (A, B, S) is a Yes-instance for NMTS if and only if (V, ω :
V → {1}, S) is a Yes-instance for SR3.

As the certificate is a tree on n vertices, the membership in NP is obvious. $%

5 Freely choosable weights

We remark that the following modification of WSR makes any set of splits
realizable in some tree. Suppose the weight function ω is not given, but freely
choosable, that is, we ask whether, given a multiset S of integers, there exists a
tree T = (V, E) and a weight function ω : V → N, such that S is the multiset of
splits of T . We call this problem ChWSR.

Theorem 4 (!). ChWSR always admits a solution.

Let n = 2m − 2 +
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i=1 ai +
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i=1 bi be the number of vertices with
unit weights. The multiset S of splits is defined as follows :

For each value ai , 1 ≤ i ≤ m, the values {1, 2, . . . , ai} are
added to S and we refer to these splits as green splits.
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– For each value si, 1 ≤ i ≤ m, the value 1 + si is added to S and we refer to
these splits as red splits.

– For each value si, 2 ≤ i ≤ m − 2, the value (i − 1) +
∑i

j=1(1 + sj) is added
to S and we refer to these splits as black splits.

– For each value ai, 1 ≤ i ≤ m, the values {1, 2, . . . , ai} are added to S and
we refer to these splits as green splits.

– For each value bi, 1 ≤ i ≤ m, the values {1, 2, . . . , bi} are added to S and we
refer to these splits as blue splits.

Finally each value x of S is replaced by min(x, n − x).

Lemma 3 (!). (A, B, S) is a Yes-instance for NMTS if and only if (V, ω :
V → {1}, S) is a Yes-instance for SR3.

As the certificate is a tree on n vertices, the membership in NP is obvious. $%

5 Freely choosable weights

We remark that the following modification of WSR makes any set of splits
realizable in some tree. Suppose the weight function ω is not given, but freely
choosable, that is, we ask whether, given a multiset S of integers, there exists a
tree T = (V, E) and a weight function ω : V → N, such that S is the multiset of
splits of T . We call this problem ChWSR.

Theorem 4 (!). ChWSR always admits a solution.

Let n = 2m − 2 +
∑m

i=1 ai +
∑m

i=1 bi be the number of vertices with
unit weights. The multiset S of splits is defined as follows :

For each value bi , 1 ≤ i ≤ m, the values {1, 2, . . . , bi} are
added to S and we refer to these splits as blue splits.
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Fig. 2. A tree with maximum degree 3 representing a solution to a SR3 instance
constructed as described in the proof of Theorem 3.
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i=1 bi be the number of vertices with
unit weights. The multiset S of splits is defined as follows :
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Finally each value x of S is replaced by min(x , n − x).
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Scaling the input ensures that for any i , j , k ∈ {1, 2, . . . ,m} :

ai + sj > sk

ai + aj < sk

bi + bj > sk

ai + aj > bk

Claim. For every i ∈ {1, 2, . . . ,m}, there is a path on ai edges,
called the ai -path, using the splits 1, 2, . . . , ai and there is a path
on bi edges, called the bi -path, using the splits 1, 2, . . . , bi .
All these a-paths and b-paths are edge-disjoint.

Claim. For every i ∈ {1, 2, . . . ,m}, the red split of value 1 + si
is assigned to an edge ei of T whose vertex ui is the common
extremity of an a-path and a b-path,
where ui is in the subtree of T − ei that has si + 1 vertices.

Theorem

The problem SR3 is NP-complete.
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In this talk, we have shown the following :

Scheduling With Common Deadlines is NP-complete

WSR2 is strongly NP-complete

WSR2 is polynomial-time solvable, assuming that the number
of distinct vertex weights is constant-bounded

SR3 is NP-complete, which closes the gap (SR2 poly-time
solvable ; SR4 NP-c)

In the paper we also show :

Splits Reconstruction for caterpillars of unbounded
hair-length and maximum degree 3 is NP-complete

Given a multiset S of splits, the problem asking whether there
exists a tree T = (V ,E ) and a weight function ω : V → N
s.t. S is the multiset of splits of T , always admits a solution
that can be built in polynomial-time.
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Interesting questions :

We have shown that WSR2 is in XP (parameterized by the
number of distinct vertex weights).

Is the problem FPT ?

A generalization is known to be W[1]-hard [Fellows, Gaspers, Rosamond]

For which restrictions on the multiset of vertex weights
does the problem become polynomial-time solvable, or
FPT with respect to some interesting parameterizations.
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Merci !
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