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Basic notions
Definition

A housing market is a quadrupleM = (A,H, ω,P) where
A is a set of n agents, H is a set of m house types
ω : A→ H is the endowment function
preference profile P is an n-tuple of agents’ preferences, i.e. linearly
ordered lists P (a) of acceptable house types

Example.

A = {a1, a2, . . . , a7};
H = {h1, h2, h3, h4}
ω(a1) = h1; P (a1) : h4, h3, h2, h1

ω(a2) = h4; P (a2) : (h1, h3), h4

ω(a3) = h1; P (a3) : h2, h4, h1

ω(a4) = h2; P (a4) : (h1, h3), h4, h2

ω(a5) = h2; P (a5) : h4, h1, h2

ω(a6) = h3; P (a6) : h4, h3

ω(a7) = h4; P (a7) : h3, h1, h4
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Further notation

Definition
A function x : A→ H is an allocation if there exists a bijection π on A
such that x(a) = ω(π(a)) for each a ∈ A.

Each allocation consists of trading cycles

ω(a1) = h1; P (a1) : h4, h3, h2, h1 take trading cycles
ω(a2) = h4; P (a2) : (h1, h3), h4 (a1, a7, a6, a2)(a3, a4, a5)
ω(a3) = h1; P (a3) : h2, h4, h1 this means
ω(a4) = h2; P (a4) : (h1, h3), h4, h2 x(a1) = h4;
ω(a5) = h2; P (a5) : h4, h1, h2 x(a7) = h3;
ω(a6) = h3; P (a6) : h4, h3 x(a6) = h4;
ω(a7) = h4; P (a7) : h3, h1, h4 x(a2) = h1 etc.
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Economic equilibrium

Definition
A pair (p, x), where p : H → R is a price function and x is an
allocation on A is an economic equilibrium for marketM if for
each a ∈ A, house x(a) is of type that is among the most preferred
house types in his budget set, i.e.

S = Ba(p) = {h ∈ H; p(h) ≤ p(ω(a))}.

Lema

If (p, x) is an economic equilibrium for marketM then
p(x(a)) = p(ω(a)) for each a ∈ A.

Economic equilibrium in housing markets K. Cechlárová & E. Jelínková



Example: equilibrium

ω(a1) = h1; P (a1) : h4, h3, h2, h1

ω(a2) = h4; P (a2) : (h1, h3), h4

ω(a3) = h1; P (a3) : h2, h4, h1

ω(a4) = h2; P (a4) : (h1, h3), h4, h2

ω(a5) = h2; P (a5) : h4, h1, h2

ω(a6) = h3; P (a6) : h4, h3

ω(a7) = h4; P (a7) : h3, h1, h4

Take p(hj) = p for all j and (a1, a7, a6, a2)(a3, a4, a5)

Not equilibrium, since x(a5) = h1 and this is the second-choice house
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ω(a1) = h1; P (a1) : h4, h3, h2, h1

ω(a2) = h4; P (a2) : (h1, h3), h4

ω(a3) = h1; P (a3) : h2, h4, h1

ω(a4) = h2; P (a4) : (h1, h3), h4, h2

ω(a5) = h2; P (a5) : h4, h1, h2

ω(a6) = h3; P (a6) : h4, h3

ω(a7) = h4; P (a7) : h3, h1, h4

Take p(hj) = p for all j and (a1, a7, a6, a2)(a3, a4, a5)

Not equilibrium, since x(a5) = h1 and this is the second-choice house

Observation: In this example there is no equilibrium with equal prices, as
demand for houses of type h4 is 3, while the supply is only 2.
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Brief history

Walras 1874: notion of equilibrium
Arrow, Debreu 1954: notion of exchange economy
equilibrium exist if commodites are infinitely divisible
Deng, Papadimitriou, Safra 2002: if commodities are
indivisible, decision about the equilibrium existence is NPC
Shapley, Scarf 1974: housing market
m = n; each house different
Gale 1974: proof of equilibrium existence by TTC algorithm

Economic equilibrium in housing markets K. Cechlárová & E. Jelínková



Brief history
Walras 1874: notion of equilibrium
Arrow, Debreu 1954: notion of exchange economy
equilibrium exist if commodites are infinitely divisible
Deng, Papadimitriou, Safra 2002: if commodities are
indivisible, decision about the equilibrium existence is NPC
Shapley, Scarf 1974: housing market
m = n; each house different
Gale 1974: proof of equilibrium existence by TTC algorithm

Economic equilibrium in housing markets K. Cechlárová & E. Jelínková



Brief history
Walras 1874: notion of equilibrium
Arrow, Debreu 1954: notion of exchange economy
equilibrium exist if commodites are infinitely divisible
Deng, Papadimitriou, Safra 2002: if commodities are
indivisible, decision about the equilibrium existence is NPC
Shapley, Scarf 1974: housing market
m = n; each house different
Gale 1974: proof of equilibrium existence by TTC algorithm

Economic equilibrium in housing markets K. Cechlárová & E. Jelínková



Brief history
Walras 1874: notion of equilibrium
Arrow, Debreu 1954: notion of exchange economy
equilibrium exist if commodites are infinitely divisible
Deng, Papadimitriou, Safra 2002: if commodities are
indivisible, decision about the equilibrium existence is NPC
Shapley, Scarf 1974: housing market
m = n; each house different
Gale 1974: proof of equilibrium existence by TTC algorithm

Economic equilibrium in housing markets K. Cechlárová & E. Jelínková



Brief history
Walras 1874: notion of equilibrium
Arrow, Debreu 1954: notion of exchange economy
equilibrium exist if commodites are infinitely divisible
Deng, Papadimitriou, Safra 2002: if commodities are
indivisible, decision about the equilibrium existence is NPC
Shapley, Scarf 1974: housing market
m = n; each house different
Gale 1974: proof of equilibrium existence by TTC algorithm

Economic equilibrium in housing markets K. Cechlárová & E. Jelínková



Brief history
Walras 1874: notion of equilibrium
Arrow, Debreu 1954: notion of exchange economy
equilibrium exist if commodites are infinitely divisible
Deng, Papadimitriou, Safra 2002: if commodities are
indivisible, decision about the equilibrium existence is NPC
Shapley, Scarf 1974: housing market
m = n; each house different
Gale 1974: proof of equilibrium existence by TTC algorithm

Economic equilibrium in housing markets K. Cechlárová & E. Jelínková



Brief history
Walras 1874: notion of equilibrium
Arrow, Debreu 1954: notion of exchange economy
equilibrium exist if commodites are infinitely divisible
Deng, Papadimitriou, Safra 2002: if commodities are
indivisible, decision about the equilibrium existence is NPC
Shapley, Scarf 1974: housing market
m = n; each house different
Gale 1974: proof of equilibrium existence by TTC algorithm

Economic equilibrium in housing markets K. Cechlárová & E. Jelínková



Brief history
Walras 1874: notion of equilibrium
Arrow, Debreu 1954: notion of exchange economy
equilibrium exist if commodites are infinitely divisible
Deng, Papadimitriou, Safra 2002: if commodities are
indivisible, decision about the equilibrium existence is NPC
Shapley, Scarf 1974: housing market
m = n; each house different
Gale 1974: proof of equilibrium existence by TTC algorithm

Economic equilibrium in housing markets K. Cechlárová & E. Jelínková



Duplicate houses make the difference

Theorem (Fekete, Skutella and Woeginger 2003)

If the housing market contains duplicate hoses, it is NP-complete to
decide whether an economic equilibrium exists.

Theorem (KC & Fleiner 2008)

If preferences over house types are strict, the existence of
equilibrium can be decided in polynomial time.

O(L) implementation – DFS algorithm (KC & Jelínková)

Theorem (Cechlárová & Fleiner 2008)

If preferences are trichotomous, the existence problem remains
NP-complete.
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Approximate equilibrium

Definition
An agent a is unsatisfied with respect to (p, x) if x(a) is not among
the most preferred house types in his budget set according to p;
otherwise he is said to be satisfied.

DM(p, x) . . . the set of unsatisfied agents inM w.r.t. (p, x)
SM(p, x) . . . the set of satisfied agents inM w.r.t. (p, x)

Definition
(p, x) is an α-deficient equilibrium, if |DM(p, x)| = α. Deficiency
D(M) of a housing marketM, is the minimum α such thatM
admits an α-deficient equilibrium.

opt(M) = n−D(M)

housing marketM admits an equilibrium iff opt(M) = n
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Easy cases

an acyclic market always has an equilibrium
If m = 2, then opt(M) = max{2 min{n1, n2}, n1, n2}, where
|A(h1)| = n1, |A(h2)| = n2.

p1 = p2: trading cycles alternate h1 and h2; so S = 2min{n1, n2}
p1 6= p2: no trading, but all agents with cheaper house are satisfied

For n2 = 2n1 we have opt(M) = 2/3n.

Theorem (KC & Schlotter 2010)

If preferences are arbitrary and the number m of house types fixed
then D(M) can be computed in O(mm√nL) time, where L is the
total length of preference lists of all agents .
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Approximating the number of satisfied agents

Theorem (KC & Jelínková 2011)

If preferences are trichotomous then there is a 2-approximation
algorithm for opt(M). Moreover, this guarantee is tight.

trichotomous market represented by graph G = (V,E) where
vertices correspond to agents and (i, j) ∈ E if agent i accepts house
ω(j)

let C be a maximum cycle packing of G, covering agents AC

If |AC | ≥ n/2: all houses the same price, cycles of C trading

If |AC | < n/2: then AC is a feedback vertes set and submarket
generated by A \AC acyclic.

Satisfy all agents in A \AC , by setting prices according to a
topological ordering in acyclic graph
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Approximating the number of satisfied agents

Theorem (KC & Jelínková 2011)

If preferences are trichotomous then there is a 2-approximation
algorithm for opt(M). Moreover, this guarantee is tight.

2q + 1 agents
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Approximating the number of satisfied agents

Theorem (KC & Jelínková 2011)

If preferences are trichotomous then there is a 2-approximation
algorithm for opt(M). Moreover, this guarantee is tight.

2q + 1 agents,
each cycle packing satisfies q + 1 agents
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Approximating the number of satisfied agents

Theorem (KC & Jelínková 2011)

If preferences are trichotomous then there is a 2-approximation
algorithm for opt(M). Moreover, this guarantee is tight.

2q + 1 agents
each cycle packing satisfies q + 1 agents,
but 2q agents can be satisfies
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Inapproximability – transformation

for graph G construct a marketM.
for v ∈ G: 2 in-agents Iv = {iv,1, iv,2} and one out-agent ov

ω(iv,1) = ω(iv,2) = hv; ω(ov) = h∗v

in-agents Iv desire house of out-agent ov

agent ov desires houses hw such that {v, w} ∈ E(G)
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Inapproximability – transformation – properties

constructed marketM is trichotomous, n = 3|V (G)|
F vertex cover in G iff {ov; v ∈ F} feedback vertex set inM.
There exists an optimal (p, x) with no trading
(p, x) optimal with no trading then all in-agents are satisfied
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Inapproximability – result

Theorem

The construction yields for each graph G a trichotomous housing
marketM with n = 3|V (G)| agents such that
opt(M) = 3|V (G)| −min{|W |,W vertex cover in G}.

Halldórsson, Iwama, Miyazaki, Yanagisawa, Improved approximation
results for the stable marriage problem, ACM Trans. Alg., 2007

construction: to each graph G = (V,E) a stable marriage
instance I such that the # men= # women= 3|V (G)| and
|opt(I)| = 3|V (G)| −min{|W |,W vertex cover in G}.
we get by the same computations the following result

Theorem
It is NP-hard to approximate opt(M) for trichotomic markets with
an approximation factor smaller than 21/19
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Inapproximability – extensions

Theorem
It is NP-hard to approximate opt(M) for general markets

1 within a factor smaller than 1.2, and
2 within a factor smaller than 1.5, if UGC is true.

Open problems:
Better approximation algorithms?
For general preferences?
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