Approximability of Economic Equilibrium in Housing Markets with Duplicate Houses

Katarína Cechlárová, PF UPJŠ Košice and Eva Jelínková, MFF UK Praha

Economic equilibrium in housing markets

Basic notions

Definition

A housing market is a quadruple $\mathcal{M} = (A, H, \omega, \mathcal{P})$ where

- A is a set of n agents, H is a set of m house types
- $\omega: A \to H$ is the endowment function
- preference profile \mathcal{P} is an *n*-tuple of agents' preferences, i.e. linearly ordered lists P(a) of acceptable house types

Example.

$$\begin{split} A &= \{a_1, a_2, \dots, a_7\};\\ H &= \{h_1, h_2, h_3, h_4\}\\ \omega(a_1) &= h_1; \qquad P(a_1): h_4, h_3, h_2, h_1\\ \omega(a_2) &= h_4; \qquad P(a_2): (h_1, h_3), h_4\\ \omega(a_3) &= h_1; \qquad P(a_3): h_2, h_4, h_1\\ \omega(a_4) &= h_2; \qquad P(a_4): (h_1, h_3), h_4, h_2\\ \omega(a_5) &= h_2; \qquad P(a_5): h_4, h_1, h_2\\ \omega(a_6) &= h_3; \qquad P(a_6): h_4, h_3\\ \omega(a_7) &= h_4; \qquad P(a_7): h_3, h_1, h_4 \end{split}$$

Basic notions

Definition

A housing market is a quadruple $\mathcal{M} = (A, H, \omega, \mathcal{P})$ where

- A is a set of n agents, H is a set of m house types
- $\omega: A \to H$ is the endowment function
- preference profile \mathcal{P} is an *n*-tuple of agents' preferences, i.e. linearly ordered lists P(a) of acceptable house types

Example.

$$\begin{array}{ll} A = \{a_1, a_2, \dots, a_7\} \\ H = \{h_1, h_2, h_3, h_4\} \\ \\ \omega(a_1) = h_1; & P(a_1) : h_4, h_3, h_2, h_1 & \text{acceptable houses} \\ \\ \omega(a_2) = h_4; & P(a_2) : (h_1, h_3), h_4 & \text{ties} \\ \\ \omega(a_3) = h_1; & P(a_3) : h_2, h_4, h_1 & \text{strict preferences} \\ \\ \omega(a_4) = h_2; & P(a_4) : (h_1, h_3), h_4, h_2 & \text{trichotomous preferences} \\ \\ \omega(a_5) = h_2; & P(a_5) : h_4, h_1, h_2 & \text{w}(a_6) = h_3; & P(a_6) : h_4, h_3 & \text{w}(a_7) = h_4; & P(a_7) : h_3, h_1, h_4 & \text{trichotomous preferences} \end{array}$$

Basic notions

Definition

A housing market is a quadruple $\mathcal{M} = (A, H, \omega, \mathcal{P})$ where

- A is a set of n agents, H is a set of m house types
- $\omega: A \to H$ is the endowment function
- preference profile \mathcal{P} is an *n*-tuple of agents' preferences, i.e. linearly ordered lists P(a) of acceptable house types

Example.

$$\begin{split} &A = \{a_1, a_2, \dots, a_7\} \\ &H = \{h_1, h_2, h_3, h_4\} \\ &\omega(a_1) = h_1; \qquad P(a_1) : (h_4, h_3, h_2), h_1 \\ &\omega(a_2) = h_4; \qquad P(a_2) : (h_1, h_3), h_4 \\ &\omega(a_3) = h_1; \qquad P(a_3) : (h_2, h_4), h_1 \\ &\omega(a_4) = h_2; \qquad P(a_4) : (h_1, h_3, h_4), h_2 \\ &\omega(a_5) = h_2; \qquad P(a_5) : (h_4, h_1), h_2 \\ &\omega(a_6) = h_3; \qquad P(a_6) : h_4, h_3 \\ &\omega(a_7) = h_4; \qquad P(a_7) : (h_3, h_1), h_4 \end{split}$$

trichotomous preferences each agent has:

- 1. better house types
- 2. type of his own house
- 3. unacceptable houses

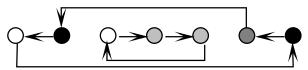
Further notation

Definition

A function $x : A \to H$ is an allocation if there exists a bijection π on A such that $x(a) = \omega(\pi(a))$ for each $a \in A$.

• Each allocation consists of trading cycles

$\omega(a_1) = h_1;$	$P(a_1): h_4, h_3, h_2, h_1$	take trading cycles
$\omega(a_2) = h_4;$	$P(a_2):(h_1,h_3),h_4$	$(a_1, a_7, a_6, a_2)(a_3, a_4, a_5)$
$\omega(a_3) = h_1;$	$P(a_3):h_2,h_4,h_1$	this means
$\omega(a_4) = h_2;$	$P(a_4):(h_1,h_3),h_4,h_2$	$x(a_1) = h_4;$
$\omega(a_5) = h_2;$	$P(a_5):h_4,h_1,h_2$	$x(a_7) = h_3;$
$\omega(a_6) = h_3;$	$P(a_6): h_4, h_3$	$x(a_6) = h_4;$
$\omega(a_7) = h_4;$	$P(a_7):h_3,h_1,h_4$	$x(a_2) = h_1$ etc.



Economic equilibrium in housing markets

K. Cechlárová & E. Jelínková < 🗄 > 🛛 🛓 🖉 🔍 🖓

Definition

A pair (p, x), where $p: H \to \mathbb{R}$ is a price function and x is an allocation on A is an economic equilibrium for market \mathcal{M} if for each $a \in A$, house x(a) is of type that is among the most preferred house types in his budget set, i.e.

$$S = B_a(p) = \{h \in H; p(h) \le p(\omega(a))\}.$$

Lema

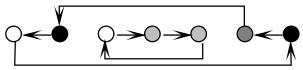
If (p, x) is an economic equilibrium for market \mathcal{M} then $p(x(a)) = p(\omega(a))$ for each $a \in A$.

Example: equilibrium

$$\begin{array}{ll} \omega(a_1) = h_1; & P(a_1):h_4,h_3,h_2,h_1 \\ \omega(a_2) = h_4; & P(a_2):(h_1,h_3),h_4 \\ \omega(a_3) = h_1; & P(a_3):h_2,h_4,h_1 \\ \omega(a_4) = h_2; & P(a_4):(h_1,h_3),h_4,h_2 \\ \omega(a_5) = h_2; & P(a_5):h_4,h_1,h_2 \\ \omega(a_6) = h_3; & P(a_6):h_4,h_3 \\ \omega(a_7) = h_4; & P(a_7):h_3,h_1,h_4 \end{array}$$

Take $p(h_j) = p$ for all j and $(a_1, a_7, a_6, a_2)(a_3, a_4, a_5)$

Not equilibrium, since $x(a_5) = h_1$ and this is the second-choice house

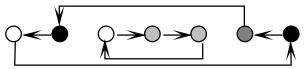


Example: equilibrium

$$\begin{array}{ll} \omega(a_1) = h_1; & P(a_1):h_4,h_3,h_2,h_1\\ \omega(a_2) = h_4; & P(a_2):(h_1,h_3),h_4\\ \omega(a_3) = h_1; & P(a_3):h_2,h_4,h_1\\ \omega(a_4) = h_2; & P(a_4):(h_1,h_3),h_4,h_2\\ \omega(a_5) = h_2; & P(a_5):h_4,h_1,h_2\\ \omega(a_6) = h_3; & P(a_6):h_4,h_3\\ \omega(a_7) = h_4; & P(a_7):h_3,h_1,h_4 \end{array}$$

Take $p(h_j) = p$ for all j and $(a_1, a_7, a_6, a_2)(a_3, a_4, a_5)$

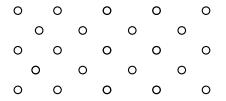
Not equilibrium, since $x(a_5) = h_1$ and this is the second-choice house



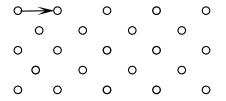
Observation: In this example there is no equilibrium with equal prices, as demand for houses of type h_4 is 3, while the supply is only 2.

- Walras 1874: notion of equilibrium
- Arrow, Debreu 1954: notion of exchange economy
- equilibrium exist if commodites are infinitely divisible
- Deng, Papadimitriou, Safra 2002: if commodities are indivisible, decision about the equilibrium existence is NPC
- Shapley, Scarf 1974: housing market
- m = n; each house different
- Gale 1974: proof of equilibrium existence by TTC algorithm

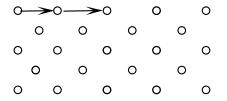
- Walras 1874: notion of equilibrium
- Arrow, Debreu 1954: notion of exchange economy
- equilibrium exist if commodites are infinitely divisible
- Deng, Papadimitriou, Safra 2002: if commodities are indivisible, decision about the equilibrium existence is NPC
- Shapley, Scarf 1974: housing market
- m = n; each house different
- Gale 1974: proof of equilibrium existence by TTC algorithm



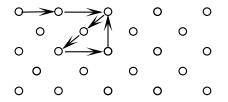
- Walras 1874: notion of equilibrium
- Arrow, Debreu 1954: notion of exchange economy
- equilibrium exist if commodites are infinitely divisible
- Deng, Papadimitriou, Safra 2002: if commodities are indivisible, decision about the equilibrium existence is NPC
- Shapley, Scarf 1974: housing market
- m = n; each house different
- Gale 1974: proof of equilibrium existence by TTC algorithm



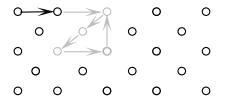
- Walras 1874: notion of equilibrium
- Arrow, Debreu 1954: notion of exchange economy
- equilibrium exist if commodites are infinitely divisible
- Deng, Papadimitriou, Safra 2002: if commodities are indivisible, decision about the equilibrium existence is NPC
- Shapley, Scarf 1974: housing market
- m = n; each house different
- Gale 1974: proof of equilibrium existence by TTC algorithm



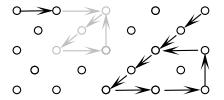
- Walras 1874: notion of equilibrium
- Arrow, Debreu 1954: notion of exchange economy
- equilibrium exist if commodites are infinitely divisible
- Deng, Papadimitriou, Safra 2002: if commodities are indivisible, decision about the equilibrium existence is NPC
- Shapley, Scarf 1974: housing market
- m = n; each house different
- Gale 1974: proof of equilibrium existence by TTC algorithm



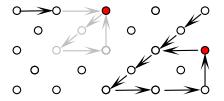
- Walras 1874: notion of equilibrium
- Arrow, Debreu 1954: notion of exchange economy
- equilibrium exist if commodites are infinitely divisible
- Deng, Papadimitriou, Safra 2002: if commodities are indivisible, decision about the equilibrium existence is NPC
- Shapley, Scarf 1974: housing market
- m = n; each house different
- Gale 1974: proof of equilibrium existence by TTC algorithm



- Walras 1874: notion of equilibrium
- Arrow, Debreu 1954: notion of exchange economy
- equilibrium exist if commodites are infinitely divisible
- Deng, Papadimitriou, Safra 2002: if commodities are indivisible, decision about the equilibrium existence is NPC
- Shapley, Scarf 1974: housing market
- m = n; each house different
- Gale 1974: proof of equilibrium existence by TTC algorithm



- Walras 1874: notion of equilibrium
- Arrow, Debreu 1954: notion of exchange economy
- equilibrium exist if commodites are infinitely divisible
- Deng, Papadimitriou, Safra 2002: if commodities are indivisible, decision about the equilibrium existence is NPC
- Shapley, Scarf 1974: housing market
- m = n; each house different
- Gale 1974: proof of equilibrium existence by TTC algorithm



Theorem (Fekete, Skutella and Woeginger 2003)

If the housing market contains duplicate hoses, it is NP-complete to decide whether an economic equilibrium exists.

Theorem (KC & Fleiner 2008)

If preferences over house types are strict, the existence of equilibrium can be decided in polynomial time.

• O(L) implementation – DFS algorithm (KC & Jelínková)

Theorem (Cechlárová & Fleiner 2008)

If preferences are trichotomous, the existence problem remains NP-complete.

Definition

An agent a is unsatisfied with respect to (p, x) if x(a) is not among the most preferred house types in his budget set according to p; otherwise he is said to be satisfied.

 $\mathcal{D}_{\mathcal{M}}(p,x) \dots$ the set of unsatisfied agents in \mathcal{M} w.r.t. (p,x) $\mathcal{S}_{\mathcal{M}}(p,x) \dots$ the set of satisfied agents in \mathcal{M} w.r.t. (p,x)

Definition

(p, x) is an α -deficient equilibrium, if $|\mathcal{D}_{\mathcal{M}}(p, x)| = \alpha$. Deficiency $\mathcal{D}(\mathcal{M})$ of a housing market \mathcal{M} , is the minimum α such that \mathcal{M} admits an α -deficient equilibrium.

$$opt(\mathcal{M}) = n - \mathcal{D}(\mathcal{M})$$

• housing market \mathcal{M} admits an equilibrium iff $opt(\mathcal{M}) = n$

Economic equilibrium in housing markets

K. Cechlárová & E. Jelínková < 🗄 > 🛛 🛓 🖉 🔍 🖓

Easy cases

- an acyclic market always has an equilibrium
- If m = 2, then $opt(\mathcal{M}) = \max\{2\min\{n_1, n_2\}, n_1, n_2\}$, where $|A(h_1)| = n_1$, $|A(h_2)| = n_2$.
- $p_1 = p_2$: trading cycles alternate h_1 and h_2 ; so $S = 2min\{n_1, n_2\}$
- $p_1 \neq p_2$: no trading, but all agents with cheaper house are satisfied

For
$$n_2 = 2n_1$$
 we have $opt(\mathcal{M}) = 2/3n$.

Theorem (KC & Schlotter 2010)

If preferences are arbitrary and the number m of house types fixed then $\mathcal{D}(\mathcal{M})$ can be computed in $O(m^m\sqrt{n}L)$ time, where L is the total length of preference lists of all agents .

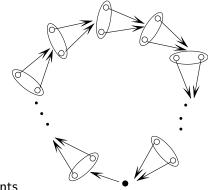
Theorem (KC & Jelínková 2011)

If preferences are trichotomous then there is a 2-approximation algorithm for $opt(\mathcal{M})$. Moreover, this guarantee is tight.

- trichotomous market represented by graph G=(V,E) where vertices correspond to agents and $(i,j)\in E$ if agent i accepts house $\omega(j)$
- let C be a maximum cycle packing of G, covering agents A_C
- If $|A_C| \ge n/2$: all houses the same price, cycles of C trading
- If $|A_C| < n/2$: then A_C is a feedback vertes set and submarket generated by $A \setminus A_C$ acyclic.
- Satisfy all agents in $A \setminus A_C$, by setting prices according to a topological ordering in acyclic graph

Theorem (KC & Jelínková 2011)

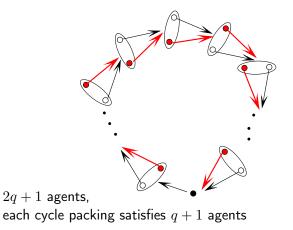
If preferences are trichotomous then there is a 2-approximation algorithm for $opt(\mathcal{M})$. Moreover, this guarantee is tight.



2q+1 agents

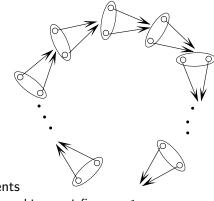
Theorem (KC & Jelínková 2011)

If preferences are trichotomous then there is a 2-approximation algorithm for $opt(\mathcal{M})$. Moreover, this guarantee is tight.



Theorem (KC & Jelínková 2011)

If preferences are trichotomous then there is a 2-approximation algorithm for $opt(\mathcal{M})$. Moreover, this guarantee is tight.



2q + 1 agents each cycle packing satisfies q + 1 agents, but 2q agents can be satisfies Economic equilibrium in housing markets

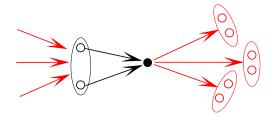
K. Cechlárová & E. Jelínková 🗧 🕨 🛯 📃 🖉 🔍 🔿 🔍 🔿

Inapproximability – transformation

- for graph G construct a market \mathcal{M} .
- for $v \in G$: 2 in-agents $I_v = \{i_{v,1}, i_{v,2}\}$ and one out-agent o_v

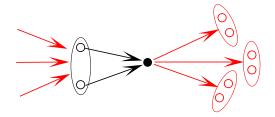
•
$$\omega(i_{v,1}) = \omega(i_{v,2}) = h_v; \ \omega(o_v) = h_v^*$$

- in-agents I_v desire house of out-agent o_v
- agent o_v desires houses h_w such that $\{v, w\} \in E(G)$



Inapproximability – transformation – properties

- \bullet constructed market ${\mathcal M}$ is trichotomous, n=3|V(G)|
- F vertex cover in G iff $\{o_v; v \in F\}$ feedback vertex set in \mathcal{M} .
- There exists an optimal (p, x) with no trading
- (p, x) optimal with no trading then all in-agents are satisfied



Theorem

The construction yields for each graph G a trichotomous housing market \mathcal{M} with n = 3|V(G)| agents such that $opt(\mathcal{M}) = 3|V(G)| - min\{|W|, W \text{ vertex cover in } G\}.$

Halldórsson, Iwama, Miyazaki, Yanagisawa, *Improved approximation results for the stable marriage problem*, ACM Trans. Alg., 2007

- construction: to each graph G = (V, E) a stable marriage instance I such that the # men= # women= 3|V(G)| and $|opt(I)| = 3|V(G)| min\{|W|, W \text{ vertex cover in } G\}.$
- we get by the same computations the following result

Theorem

It is NP-hard to approximate opt(M) for trichotomic markets with an approximation factor smaller than 21/19

Theorem

It is NP-hard to approximate $opt(\mathcal{M})$ for general markets

- within a factor smaller than 1.2, and
- **2** within a factor smaller than 1.5, if UGC is true.

Open problems:

- Better approximation algorithms?
- For general preferences?