Rigorous computation of Poincaré maps

T. Kapela, D. Wilczak, P. Zgliczyński

Jagiellonian University, Kraków, Poland

SWIM '2015 June 11, 2015, Praha, Česká Republika

Outline of presentation:

- theory of Poincaré maps
- an algorithm for computation of Poincaré maps
- choice of sections and coordinate systems (examples)

Part 1 Theory

イロト イヨト イヨト イヨ

Local sections

Definition

$$\Pi \subset \mathbb{R}^n$$
 is δ -section for $(t, x) \rightarrow \varphi(t, x)$

$$(-\delta, \delta) imes \Pi
i (t, x) o \varphi(t, x)$$
 is diffeomorphism onto image

2

Local sections

Definition

$$\Pi \subset \mathbb{R}^n$$
 is δ -section for $(t, x) \rightarrow \varphi(t, x)$

 $\label{eq:constraint} (-\delta,\delta) \times \Pi \ni (t,x) \to \varphi(t,x) \text{ is diffeomorphism onto image}$

Definition

 Π is *Poincaré section* for $(t, x) \rightarrow \varphi(t, x)$

$\label{eq:static} \prescript{1} \label{eq:static} \prescript{1} \presc$

Remark

For Π smooth and x' = f(x) it is enough to have $\langle f(x); n_S(x) \rangle \neq 0$

Definition

 Π is *Poincaré section* for $(t, x) \rightarrow \varphi(t, x)$

$\label{eq:relation} \prescript{1} \prescri$

Remark

For Π smooth and x' = f(x) it is enough to have $\langle f(x); n_{\mathcal{S}}(x) \rangle \neq 0$

イロト イポト イヨト イヨ

Poincaré maps

Π_1, Π_2 - Poincaré sections for φ

Definition

$P: \Pi_1 \rightarrow \Pi_2$ - Poincaré map

- $x \in \text{dom}(P)$ iff $\varphi(t, x) \in \Pi_2$ for some t > 0
- P(x) first cut of $\varphi(t, x)$ with Π_2 for t > 0

Poincaré maps

 Π_1,Π_2 - Poincaré sections for φ

Definition

- $P \colon \Pi_1 \to \Pi_2$ Poincaré map
 - $x \in \text{dom}(P)$ iff $\varphi(t, x) \in \Pi_2$ for some t > 0
 - P(x) first cut of $\varphi(t, x)$ with Π_2 for t > 0

4 A N

- A 🖻 🕨

Poincaré maps

 Π_1,Π_2 - Poincaré sections for φ

Definition

- $\textit{P} \colon \Pi_1 \to \Pi_2$ Poincaré map
 - $x \in \operatorname{dom}(P)$ iff $\varphi(t, x) \in \Pi_2$ for some t > 0
 - P(x) first cut of $\varphi(t, x)$ with Π_2 for t > 0

$\Pi = \Pi_{\alpha, \mathcal{C}} = \{ \boldsymbol{x} : \alpha(\boldsymbol{x}) = \boldsymbol{0} \land \langle \nabla \alpha(\boldsymbol{x}); f(\boldsymbol{x}) \rangle \neq \boldsymbol{0} \land \mathcal{C}(\boldsymbol{x}) \}$

where

- $\alpha \colon \mathbb{R}^n \to \mathbb{R}$ smooth
- zero is a **regular value** of α
- C is a predicate (additional constrains on the section)
 - crossing direction
 - restriction on the domain
 - etc.

Settings

- Π_1, Π_2 sections given by $\alpha_i : \mathbb{R}^n \to \mathbb{R}$
- $P: \Pi_1 \to \Pi_2$ Poincaré map

Question: is P continuous? smooth?

A .

Settings

- Π_1, Π_2 sections given by $\alpha_i : \mathbb{R}^n \to \mathbb{R}$
- $P: \Pi_1 \to \Pi_2$ Poincaré map

Question: is P continuous? smooth?

Settings

- Π_1, Π_2 sections given by $\alpha_i : \mathbb{R}^n \to \mathbb{R}$
- $P: \Pi_1 \rightarrow \Pi_2$ Poincaré map

Question: is P continuous? smooth?

Theorem

lf

- $\Pi_i = \operatorname{cl}(\operatorname{int}\Pi_i)$
- either $\Pi_1 \subset \Pi_2$ or $\Pi_1 \cap \Pi_2 = \emptyset$

Then $P: \Pi_1 \to \Pi_2$ is smooth at every point $x \in \text{dom}P \cap \text{int}\Pi_1$ such that $P(x) \in \text{int}\Pi_2$.

• Give an algorithm for enclosing $P(X), X \subset \Pi_1$

 Discuss how results depend on the choice of Poincaré sections and coordinate systems

Part 2 Algorithm

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps

Enclosing Poincaré maps

Constrains:

- avoid subdivisions
- reduce wrapping effect

Enclosing Poincaré maps

Constrains:

- avoid subdivisions
- reduce wrapping effect

Enclosing Poincaré maps

Constrains:

- avoid subdivisions
- reduce wrapping effect

Very important:

take into account internal representation of solutions in ODE solver

Very important:

take into account internal representation of solutions in ODE solver

 $X = x + Cr_0 + Br$

Abstract algorithm:

Algorithm: AFFINETRANSFORM Input: $X \subset \mathbb{R}^n$ - RepresentableSe Input: $Q : \mathbb{R}^n \to \mathbb{R}^m$ - linear map Input: $x_0 \in \mathbb{R}^n$ - vector Output: Bound for $Q(X - x_0)$

Example:

$Q(x - x_0 + Cr_0 + Br) \cap (Q(x - x_0) + (QC)r_0 + (QB)r)$

 $X = x + Cr_0 + Br$

Abstract algorithm:

Algorithm: AFFINETRANSFORM Input: $X \subset \mathbb{R}^n$ - RepresentableSet Input: $Q : \mathbb{R}^n \to \mathbb{R}^m$ - linear map Input: $x_0 \in \mathbb{R}^n$ - vector Output: Bound for $Q(X - x_0)$

Example:

$Q(x - x_0 + Cr_0 + Br) \cap (Q(x - x_0) + (QC)r_0 + (QB)r)$

$$X = x + Cr_0 + Br$$

Abstract algorithm:

Algorithm: AFFINETRANSFORM Input: $X \subset \mathbb{R}^n$ - RepresentableSet Input: $Q : \mathbb{R}^n \to \mathbb{R}^m$ - linear map Input: $x_0 \in \mathbb{R}^n$ - vector Output: Bound for $Q(X - x_0)$

Example:

$Q(x - x_0 + Cr_0 + Br) \cap (Q(x - x_0) + (QC)r_0 + (QB)r)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$X = x + Cr_0 + Br$$

Abstract algorithm:

Algorithm: AFFINETRANSFORM Input: $X \subset \mathbb{R}^n$ - RepresentableSet Input: $Q : \mathbb{R}^n \to \mathbb{R}^m$ - linear map Input: $x_0 \in \mathbb{R}^n$ - vector Output: Bound for $Q(X - x_0)$

Example:

$$Q(x - x_0 + Cr_0 + Br) \cap (Q(x - x_0) + (QC)r_0 + (QB)r)$$

4 A N

Abstract algorithm:

Algorithm: EVAL

Input: $X \subset \mathbb{R}^n$ - RepresentableSet Input: $g : \mathbb{R}^n \to \mathbb{R}^m$ - smooth Output: Bound for g(X)

Example:

Algorithm: EVAL

Input: $x + Cr_0 + Br \subset \mathbb{R}^n$ - doubleton **Input**: $g : \mathbb{R}^n \to \mathbb{R}^m$ - smooth function **Output**: Bound for $g(x + Cr_0 + Br)$

// enclose set as interval vector $X \leftarrow [x + Cr_0 + Br]_I;$ // enclose derivative as interval matrix $M \leftarrow [Dg(X)]_I;$ **return** $[g(X)]_I \cap [g(x) + (MC)r_0 + (MB)r]_I;$

э

< ロ > < 同 > < 回 > < 回 >

Abstract algorithm:

Algorithm: EVAL

Input: $X \subset \mathbb{R}^n$ - RepresentableSet **Input**: $g : \mathbb{R}^n \to \mathbb{R}^m$ - smooth **Output**: Bound for g(X)

Example:

Algorithm: EVAL

Input: $x + Cr_0 + Br \subset \mathbb{R}^n$ - doubleton **Input**: $g : \mathbb{R}^n \to \mathbb{R}^m$ - smooth function **Output**: Bound for $g(x + Cr_0 + Br)$

// enclose set as interval vector $X \leftarrow [x + Cr_0 + Br]_I;$ // enclose derivative as interval matrix $M \leftarrow [Dg(X)]_I;$ return $[g(X)]_I \cap [g(x) + (MC)r_0 + (MB)r]_I;$

< 🗇 🕨 🖌 🖃

Algorithm: COMPUTEPOINCAREMAP

- **Input**: $[t_1, t_2]$ bound for return time
- Input: X_1 RepresentableSet that encloses $\varphi(t_1, X)$
- **Input**: α function that defines the section Π_2
- Input: f vector field that defines an ODE
- Input: x₀ a vector

Input: Q - a linear map

Output: Bound for $Q(P(X) - x_0)$

```
\begin{array}{l} t_0 \leftarrow (t_1 + t_2)/2;\\ \Delta t \leftarrow [t_1, t_2] - t_0;\\ X_0 \leftarrow \texttt{RepresentableSet} \text{ that encloses } \varphi(t_0 - t_1, X_1);\\ Y_0 \leftarrow \texttt{affineTransform}(X_0, Q, x_0);\\ Y \leftarrow \texttt{eval}(X_0, Q \circ f) \cdot \Delta t;\\ E \leftarrow \texttt{eval}(X_1, \varphi([0, t_2 - t_1], \cdot));\\ \Delta Y \leftarrow \frac{1}{2}Q \cdot Df(E) \cdot f(E) \cdot \Delta t^2;\\ Z \leftarrow (Y_0 + Y + \Delta Y) \cap Q(E - x_0);\\ \texttt{return } Z; \end{array}
```

3

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps

Part 3a Fixed section Choosing coordinates

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps

Chaos in the Michelson system

9-11 June, 2015 20 / 39

x -0.15 -0.05 0.05 0.15 0.25 -2.1 -2.3 -2.5 -2.5

х

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps

Show program

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps

Lorenz system

$$\begin{cases} x' = 10(y - x) \\ y' = x(28 - z) - y \\ z' = xy - \frac{8}{3}z \end{cases}$$

Poincaré section:

$$\mathsf{\Pi}=\{(x,y,z)\in\mathbb{R}^3:z=27\}$$
 -25

Chaos proved:

Galias, Zgliczyński. Physica D '1998.

Fig. 2. Rectangles N_{00} , N_{01} , N_{10} and N_{11} on the transversal plane. N_{00} and N_{01} are printed with solid lines, while N_{10} and N_{11} with dashed ones.

Fig. 3. Images of borders of N_{00} , N_{01} , N_{01} and N_{11} on the transversal plane – computer simulations: (a) Images of edges of N_{01} and N_{01} one can clearly see that image of N_{00} covers N_{11} horizontally and symmetrically the image of N_{01} covers N_{10} and (b) images of edges of N_{01} and N_{11} , horizontally and N_{01} horizontally and symmetrically the image of N_{01} covers N_{10} and N_{01} horizontally and N_{01} horizontally and N_{01} horizontally and N_{01} horizontally.

9-11 June, 2015 22 / 39

Fig. 2. Rectangles N_{00} , N_{01} , N_{10} and N_{11} on the transversal plane. N_{00} and N_{01} are printed with solid lines, while N_{10} and N_{11} with dashed ones.

Fig. 3. Images of borders of N_{00} , N_{01} , N_{01} and N_{11} on the transversal plane – computer simulations: taj Images of edges of N_{01} and N_{01} over an elearly see that image of N_{01} covers N_{11} bortonally and symmetrically the image of N_{01} covers N_{10} and N_{01} to vers N_{10} and N_{01} to vers N_{10} and N_{01} bortonally and N_{01} bortonally.

Part 3b Varying section: reduce "sliding"

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps

$$\begin{array}{lll} Y &=& \texttt{eval}(X_0, Q \circ f) \cdot \Delta t \\ &\subset & (Qf(\texttt{mid}(X_0)) + QDf(X_0)(X_0 - \texttt{mid}(X_0)))\Delta t \end{array}$$

The term

$$Qf(\operatorname{mid}(X_0))\approx (*,0,0,\ldots,0)$$

does not add relevant error to the result $Q(P(X) - x_0)$.

Flow is locally almost constant $\implies QDf(X_0)$ thin interval matrix.

Conclusion: size of *Y* **is quadratic in set diameter**

 $QDf(X_0)(X_0 - \operatorname{mid}(X_0)) \Delta t$

$$\begin{array}{lll} Y &=& \texttt{eval}(X_0, Q \circ f) \cdot \Delta t \\ &\subset & (Qf(\texttt{mid}(X_0)) + QDf(X_0)(X_0 - \texttt{mid}(X_0)))\Delta t \end{array}$$

The term

$$Qf(\operatorname{mid}(X_0)) \approx (*, 0, 0, \dots, 0)$$

does not add relevant error to the result $Q(P(X) - x_0)$.

Flow is locally almost constant $\implies QDf(X_0)$ thin interval matrix.

Conclusion: size of Y is quadratic in set diameter

 $QDf(X_0)(X_0 - \operatorname{mid}(X_0)) \Delta t$

$$\begin{array}{lll} Y &=& \texttt{eval}(X_0, Q \circ f) \cdot \Delta t \\ &\subset & (Qf(\texttt{mid}(X_0)) + QDf(X_0)(X_0 - \texttt{mid}(X_0)))\Delta t \end{array}$$

The term

$$Qf(\operatorname{mid}(X_0)) \approx (*, 0, 0, \dots, 0)$$

does not add relevant error to the result $Q(P(X) - x_0)$.

Flow is locally almost constant $\implies QDf(X_0)$ thin interval matrix.

Conclusion: size of Y is quadratic in set diameter

 $QDf(X_0)(X_0 - \operatorname{mid}(X_0))\Delta t$

$$\begin{array}{lll} Y &=& \texttt{eval}(X_0, Q \circ f) \cdot \Delta t \\ &\subset & (Qf(\texttt{mid}(X_0)) + QDf(X_0)(X_0 - \texttt{mid}(X_0)))\Delta t \end{array}$$

The term

$$Qf(\operatorname{mid}(X_0)) \approx (*, 0, 0, \dots, 0)$$

does not add relevant error to the result $Q(P(X) - x_0)$.

Flow is locally almost constant $\implies QDf(X_0)$ thin interval matrix.

Conclusion: size of Y is quadratic in set diameter

$$QDf(X_0)(X_0 - \operatorname{mid}(X_0))\Delta t$$

Data from some 8 DIM ODE

Y0	Y	ΔY
maxDiam=4.88e-05	maxDiam=2.62e-09	maxDiam=5.02e-9
[-2.44e-05, 2.44e-05]	[-5.08e-10, 5.08e-10]	[-6.58e-10, 9.60e-10]
[-5.31e-06, 5.31e-06]	[-1.15e-09, 1.15e-09]	[-2.69e-11, 7.13e-10]
[-9.46e-07, 9.46e-07]	[-1.31e-09, 1.31e-09]	[-3.65e-10, 1.05e-09]
[-8.41e-10, 8.41e-10]	[-9.22e-11, 9.22e-11]	[-8.26e-10, 7.58e-10]
[-2.92e-10, 2.92e-10]	[-9.62e-11, 9.62e-11]	[-2.11e-09, 2.17e-09]
[-8.91e-11, 8.91e-11]	[-1.49e-11, 1.49e-11]	[-1.10e-09, 1.10e-09]
[-8.91e-11, 8.91e-11]	[-1.49e-11, 1.49e-11]	[-1.10e-09, 1.10e-09]
[-1.82e-10, 1.82e-10]	[-1.19e-11, 1.19e-11]	[-2.50e-09, 2.52e-09]
[-3.63e-11, 3.63e-11]	[-5.22e-12, 5.22e-12]	[-8.48e-10, 8.61e-10]

æ

イロト イヨト イヨト イヨト

Data from some 8 DIM ODE

Y0	Y	ΔY
maxDiam=0.0005	maxDiam=3.01e-07	maxDiam=5.95e-7
[-0.00025, 0.00025] [-5.79e-05, 5.79e-05] [-1.38e-05, 1.38e-05] [-9.41e-08, 9.41e-08] [-3.23e-08, 3.23e-08] [-9.54e-09, 9.54e-09] [-2.00e-08, 2.00e-08]	[-5.91e-08, 5.91e-08] [-1.32e-07, 1.32e-07] [-1.50e-07, 1.50e-07] [-1.09e-08, 1.09e-08] [-1.14e-08, 1.14e-08] [-2.03e-09, 2.03e-09] [-1.78e-09, 1.78e-09]	[-7.80e-08, 1.10e-07] [-3.16e-09, 8.19e-08] [-4.20e-08, 1.20e-07] [-9.53e-08, 8.71e-08] [-2.48e-07, 2.64e-07] [-1.33e-07, 1.38e-07] [-2.88e-07, 3.07e-07]

æ

イロト イヨト イヨト イヨト

Example: periodic point for K-S PDE $u_t + \nu u_{xxxx} + u_{xx} + uu_x = 0$

approximate periodic point:

```
long double u[] = {
  0.
 1.16553884476.
 0.579136420845,
 -0.276891412264.
 -0.125829123416.
 0.0130156137922,
 0.0167574217536,
 0.00073178705754,
 -0.00147559942146.
 -0.000256013145596,
  9.54274711846e-05.
 3.26275575219e-05.
 -3.71643369111e-06,
 -2.98856651526e-06.
 -6.61935314369e-08,
 2.16021996994e-07}:
```

Brouwer theorem: If $P(B(u, r)) \subset B(u, r)$ then periodic point exists

Example: periodic point for K-S PDE $u_t + \nu u_{xxxx} + u_{xx} + uu_x = 0$

approximate periodic point:

```
long double u[] = {
  0.
 1.16553884476.
 0.579136420845,
 -0.276891412264.
 -0.125829123416.
 0.0130156137922,
 0.0167574217536,
 0.00073178705754,
 -0.00147559942146.
 -0.000256013145596,
  9.54274711846e-05.
 3.26275575219e-05.
 -3.71643369111e-06,
 -2.98856651526e-06.
 -6.61935314369e-08,
 2.16021996994e-07}:
```

Brouwer theorem:

If $P(B(u, r)) \subset B(u, r)$ then periodic point exists.

The section: $\Pi = \{x_1 = 0\}$ Coordinates on section:

orthonormalized Jordan basis

r=1e-5, DIM=8 $P(B(u,r)) \not\subset B(u,r)$:

[-4.9409474787e-05, 4.94092032917e-05] [-3.67513837624e-05, 3.67511583982e-05] [-2.92501322531e-06, 2.92492222988e-06] [-1.3185305566e-07, 1.31877347549e-07] [-1.13187855439e-07, 1.13203957946e-07] [-4.3150814398e-08, 4.32125456569e-08] [-9.12539283695e-09, 9.10375795686e-09]

A (10) A (10)

The section: $\Pi = \{x_1 = 0\}$ Coordinates on section:

orthonormalized Jordan basis

r=1e-5, DIM=8 $P(B(u, r)) \not\subset B(u, r)$:

[-4.9409474787e-05, 4.94092032917e-05] [-3.67513837624e-05, 3.67511583982e-05] [-2.92501322531e-06, 2.92492222988e-06] [-1.3185305566e-07, 1.31877347549e-07] [-1.13187855439e-07, 1.13203957946e-07] [-4.3150814398e-08, 4.32125456569e-08] [-9.12539283695e-09, 9.10375795686e-09]

The section:

 $\Pi = \{x_1 = 0\}$ Coordinates on section:

orthonormalized Jordan basis

r=1e-5, DIM=8 $P(B(u,r)) \not\subset B(u,r)$:

[-4.9409474787e-05, 4.94092032917e-05] [-3.67513837624e-05, 3.67511583982e-05] [-2.92501322531e-06, 2.92492222988e-06] [-1.3185305566e-07, 1.31877347549e-07] [-1.13187855439e-07, 1.13203957946e-07] [-4.3150814398e-08, 4.32125456569e-08] [-9.12539283695e-09, 9.10375795686e-09]

A B F A B F

The section: orthogonal at *u* Coordinates on section: orthonormalized Jordan basis

r=1e-5, DIM=8 $P(B(u, r)) \subset B(u, r)$:

[-5.31605396147e-06, 5.31674137118e-06] [-9.42191230244e-07, 9.42878588724e-07] [-1.66220842927e-09, 1.59463296395e-09] [-2.45153462935e-09, 2.50550974418e-09] [-1.18006303449e-09, 1.18024850156e-09] [-2.6604271649e-09, 2.68510394746e-09] [-8.76052652079e-10, 8.89090681198e-10]

Approximate leading eigenvalues of *DP*(*u*): 0.526674371825, 0.0900815643755

The section: orthogonal at *u* Coordinates on section: orthonormalized Jordan basis

r=1e-5, DIM=8 $P(B(u, r)) \subset B(u, r)$

[-5.31605396147e-06, 5.31674137118e-06] [-9.42191230244e-07, 9.42878588724e-07] [-1.66220842927e-09, 1.59463296395e-09] [-2.45153462935e-09, 2.50550974418e-09] [-1.18006303449e-09, 1.18024850156e-09] [-2.6604271649e-09, 2.68510394746e-09] [-8.76052652079e-10, 8.89090681198e-10]

Approximate leading eigenvalues of *DP*(*u*): 0.526674371825, 0.0900815643755

The section: orthogonal at *u* Coordinates on section:

orthonormalized Jordan basis

r=1e-5, DIM=8 $P(B(u, r)) \subset B(u, r)$:

[-5.31605396147e-06, 5.31674137118e-06] [-9.42191230244e-07, 9.42878588724e-07] [-1.66220842927e-09, 1.59463296395e-09] [-2.45153462935e-09, 2.50550974418e-09] [-1.18006303449e-09, 1.18024850156e-09] [-2.6604271649e-09, 2.68510394746e-09] [-8.76052652079e-10, 8.89090681198e-10]

Approximate leading eigenvalues of *DP*(*u*): 0.526674371825, 0.0900815643755

The section: orthogonal at *u* Coordinates on section:

orthonormalized Jordan basis

r=1e-5, DIM=8 $P(B(u, r)) \subset B(u, r)$:

[-5.31605396147e-06, 5.31674137118e-06] [-9.42191230244e-07, 9.42878588724e-07] [-1.66220842927e-09, 1.59463296395e-09] [-2.45153462935e-09, 2.50550974418e-09] [-1.18006303449e-09, 1.18024850156e-09] [-2.6604271649e-09, 2.68510394746e-09] [-8.76052652079e-10, 8.89090681198e-10]

Approximate leading eigenvalues of DP(u):

0.526674371825, 0.0900815643755

29/39

The section: orthogonal at *u* **Coordinates on section:** orthonormalized Jordan basis **r=1e-5, DIM=16** $P(B(u, r)) \subset B(u, r)$:

[-5.30518371635e-06, 5.30452691649e-06] [-9.42998614891e-07, 9.42340314603e-07] [-7.1911008934e-13, 5.81538172908e-13] [-1.56063446241e-09, 1.49626312558e-09] [-1.82179762784e-09, 1.86019508708e-09] [-1.80519332123e-09, 1.78782861756e-09] [-3.34287067059e-09, 3.40090471495e-09] [-2.24445883539e-09, 2.28533477411e-09] [-6.83498541461e-10, 7.04685901253e-10] [-5.56782384558e-09, 5.49302729071e-09] [-2.83074203767e-10, 2.67469325907e-10] [-5.91645614262e-10, 5.83804248496e-10] [-1.46949233434e-09, 1.44558774576e-09] [-5.93548847204e-10, 5.87910838106e-10] [-4.26049462538e-12, 5.01778131963e-12]

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のので

The section: orthogonal at *u* **Coordinates on section:** orthonormalized Jordan basis **r=1e-5, DIM=30** $P(B(u,r)) \subset B(u,r)$:

[-5.31139731645e-06, 5.3106576831e-06] [-9.47614873739e-07, 9.46873610315e-07] [-1.67870994542e-09, 1.75124066428e-09] [-2.07442986912e-09, 2.11599482968e-09] [-1.22123294184e-18, 1.22561422379e-18] [-2.03677108416e-09, 2.05840349398e-09] [-2.72922718755e-09, 2.70869294073e-09] [-1.01440732795e-09, 1.02041496357e-09] [-4.41659318325e-10, 4.35320365755e-10] [-3.26251189369e-10, 3.21160585319e-10] [-3.33208841207e-10, 3.38225115674e-10] [-6.87207811613e-12, 6.82381698891e-12] [-3.5839343019e-10, 3.65076264891e-10] [-1.62372782708e-10, 1.59043253978e-10] [-1.11677430415e-10, 1.08298764788e-10] [-2.89625916401e-13, 2.81947740697e-13] [-6.01913084364e-11, 6.51676540602e-11] [-2.40173695335e-12, 2.69236343649e-12] [-3.03383473885e-11, 2.74356986701e-11]

• • •

▲□▶▲圖▶▲≣▶▲≣▶ = 三 ののの

Part 3c Varying section: reduce crossing time

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps

$$Y := \operatorname{eval}(X_0, Q \circ f) \cdot \Delta t$$
$$\Delta Y := \frac{1}{2} Q \cdot Df(E) \cdot f(E) \cdot \Delta t^2$$

 $t_{\Pi}:\Pi_1
ightarrow \mathbb{R}$ - return time function

Observation: If

 $t_{\Pi} \approx \text{constant for } x \in U \subset \Pi$

then the crossing time and estimations on *P* should be tighter.

$$Y := \operatorname{eval}(X_0, Q \circ f) \cdot \Delta t$$
$$\Delta Y := \frac{1}{2} Q \cdot Df(E) \cdot f(E) \cdot \Delta t^2$$

 $\textit{t}_{\Pi}:\Pi_{1}\rightarrow\mathbb{R}$ - return time function

Observation: If

 $t_{\Pi} \approx \text{constant for } x \in U \subset \Pi$

then the crossing time and estimations on P should be tighter.

Case of fixed point: assume P(x) = x $\alpha(x) = 0$ - defines section $A := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x), x)$

$$\alpha(\varphi(t_{\Pi}(x), x)) \equiv 0$$

 $\langle \nabla \alpha(x); f(x) \rangle \nabla t_{\Pi}(x)^{T} + \nabla \alpha(x)^{T} A \equiv 0$

Case of fixed point: assume P(x) = x $\alpha(x) = 0$ - defines section $A := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x), x)$

$\alpha(\varphi(t_{\Pi}(x), x)) \equiv \mathbf{0}$ $\langle \nabla \alpha(x); f(x) \rangle \nabla t_{\Pi}(x)^{T} + \nabla \alpha(x)^{T} A \equiv \mathbf{0}$

Case of fixed point: assume P(x) = x $\alpha(x) = 0$ - defines section $A := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x), x)$

$\alpha(\varphi(t_{\Pi}(x), x)) \equiv \mathbf{0}$ $\langle \nabla \alpha(x); f(x) \rangle \nabla t_{\Pi}(x)^{T} + \nabla \alpha(x)^{T} A \equiv \mathbf{0}$

Case of fixed point: assume P(x) = x $\alpha(x) = 0$ - defines section $A := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x), x)$

$$\begin{aligned} \alpha(\varphi(t_{\Pi}(x), x)) &\equiv \mathbf{0} \\ \langle \nabla \alpha(x); f(x) \rangle \nabla t_{\Pi}(x)^{T} + \nabla \alpha(x)^{T} \mathbf{A} &\equiv \mathbf{0} \end{aligned}$$

If $\nabla \alpha(x)$ is left eigenvector for *A* for $\lambda = 1$ then

$$\langle \nabla \alpha(\mathbf{x}); f(\mathbf{x}) \rangle \nabla t_{\Pi}(\mathbf{x})^{T} + \nabla \alpha(\mathbf{x})^{T} \frac{\partial}{\partial \mathbf{x}} \mathbf{A} =$$

 $\langle \nabla \alpha(\mathbf{x}); f(\mathbf{x}) \rangle \nabla t_{\Pi}(\mathbf{x}) + \nabla \alpha(\mathbf{x}) \equiv \mathbf{0}$
 \Downarrow

 $\frac{\partial t_{\Pi}}{\partial v}(x) = 0 \text{ for } v \in T_X \Pi_{\langle \Pi \rangle \langle \Pi \rangle}$

Case of fixed point: assume P(x) = x $\alpha(x) = 0$ - defines section $A := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x), x)$

$$\begin{aligned} \alpha(\varphi(t_{\Pi}(x), x)) &\equiv \mathbf{0} \\ \langle \nabla \alpha(x); f(x) \rangle \nabla t_{\Pi}(x)^{T} + \nabla \alpha(x)^{T} \mathbf{A} &\equiv \mathbf{0} \end{aligned}$$

Case of fixed point: assume P(x) = x $\alpha(x) = 0$ - defines section $A := \frac{\partial}{\partial x} \varphi(t = t_{\Pi}(x), x)$

$$\begin{aligned} \alpha(\varphi(t_{\Pi}(x), x)) &\equiv \mathbf{0} \\ \langle \nabla \alpha(x); f(x) \rangle \nabla t_{\Pi}(x)^{T} + \nabla \alpha(x)^{T} \mathbf{A} &\equiv \mathbf{0} \end{aligned}$$

Equation:

$$x'' = 0.2x'(1-x^2) - x$$

The section: $\Pi = \{y = 0\}$ (orthogonal)

init diam	crossing time	<i>X</i> 0	<i>x</i> ₁
1e-10	3.61e-11	[-3.61e-11, 3.61e-11]	[-2.83e-11, 2.83e-11]
1e-09	3.6e-10	[-3.6e-10, 3.6e-10]	[-2.83e-10, 2.83e-10]
1e-08	3.6e-09	[-3.6e-09, 3.6e-09]	[-2.83e-09, 2.83e-09]
1e-07	3.6e-08	[-3.6e-08, 3.6e-08]	[-2.83e-08, 2.83e-08]
1e-06	3.6e-07	[-3.6e-07, 3.6e-07]	[-2.83e-07, 2.83e-07]
1e-05	3.6e-06	[-3.6e-06, 3.6e-06]	[-2.83e-06, 2.83e-06]
0.0001	3.61e-05	[-3.61e-05, 3.61e-05]	[-2.83e-05, 2.83e-05]
0.001	0.000364	[-0.000364, 0.000364]	[-0.000284, 0.000284]
0.01	0.00397	[-0.00398, 0.00397]	[-0.00293, 0.00293]

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps

9-11 June, 2015 35 / 39

Equation:

$$x'' = 0.2x'(1-x^2) - x$$

The section: $\Pi = \{y = 0\}$ (orthogonal)

init diam	crossing time	<i>x</i> ₀	<i>x</i> ₁
1e-10	3.61e-11	[-3.61e-11, 3.61e-11]	[-2.83e-11, 2.83e-11]
1e-09	3.6e-10	[-3.6e-10, 3.6e-10]	[-2.83e-10, 2.83e-10]
1e-08	3.6e-09	[-3.6e-09, 3.6e-09]	[-2.83e-09, 2.83e-09]
1e-07	3.6e-08	[-3.6e-08, 3.6e-08]	[-2.83e-08, 2.83e-08]
1e-06	3.6e-07	[-3.6e-07, 3.6e-07]	[-2.83e-07, 2.83e-07]
1e-05	3.6e-06	[-3.6e-06, 3.6e-06]	[-2.83e-06, 2.83e-06]
0.0001	3.61e-05	[-3.61e-05, 3.61e-05]	[-2.83e-05, 2.83e-05]
0.001	0.000364	[-0.000364, 0.000364]	[-0.000284, 0.000284]
0.01	0.00397	[-0.00398, 0.00397]	[-0.00293, 0.00293]

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps

Equation:

$$x'' = 0.2x'(1-x^2) - x$$

The section: minimizes crossing time

init diam	crossing time	<i>X</i> 0	<i>x</i> ₁
1e-10	3.46e-14	[-2.91e-14, 2.93e-14]	[-2.83e-11, 2.83e-11]
1e-09	3.46e-14	[-2.91e-14, 2.93e-14]	[-2.83e-10, 2.83e-10]
1e-08	3.55e-14	[-2.94e-14, 2.95e-14]	[-2.83e-09, 2.83e-09]
1e-07	6.48e-14	[-5.56e-14, 5.58e-14]	[-2.83e-08, 2.83e-08]
1e-06	2.99e-12	[-2.67e-12, 2.67e-12]	[-2.83e-07, 2.83e-07]
1e-05	2.96e-10	[-2.64e-10, 2.64e-10]	[-2.83e-06, 2.83e-06]
0.0001	2.96e-08	[-2.64e-08, 2.64e-08]	[-2.83e-05, 2.83e-05]
0.001	2.97e-06	[-2.65e-06, 2.65e-06]	[-0.000284, 0.000284]
0.01	0.000311	[-0.000278, 0.000278]	[-0.003, 0.003]

Equation:

$$x'' = 0.2x'(1-x^2) - x$$

The section: minimizes crossing time

A >

init diam	crossing time	<i>x</i> ₀	<i>x</i> ₁
1e-10	3.46e-14	[-2.91e-14, 2.93e-14]	[-2.83e-11, 2.83e-11]
1e-09	3.46e-14	[-2.91e-14, 2.93e-14]	[-2.83e-10, 2.83e-10]
1e-08	3.55e-14	[-2.94e-14, 2.95e-14]	[-2.83e-09, 2.83e-09]
1e-07	6.48e-14	[-5.56e-14, 5.58e-14]	[-2.83e-08, 2.83e-08]
1e-06	2.99e-12	[-2.67e-12, 2.67e-12]	[-2.83e-07, 2.83e-07]
1e-05	2.96e-10	[-2.64e-10, 2.64e-10]	[-2.83e-06, 2.83e-06]
0.0001	2.96e-08	[-2.64e-08, 2.64e-08]	[-2.83e-05, 2.83e-05]
0.001	2.97e-06	[-2.65e-06, 2.65e-06]	[-0.000284, 0.000284]
0.01	0.000311	[-0.000278, 0.000278]	[-0.003, 0.003]

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps

9-11 June, 2015 36 / 39

Computer Assisted Proofs in Dynamics group

Main

Research interests

The CAPD group

Applications of the CAPD

Download the library

CAPD 4.0 Documentation

RedHom subproject

Related links

Contact:

Institute of Computer Science Jagiellonian University Lojasiewicza 6 30-348 Krakow, Poland

virtual: wilczak@ii.uj.edu.pl

What is the CAPD library?

The CAPD library is a collection of flexible C++ modules which are mainly designed to computation of homology of sets and maps and nonrigorous and validated numerics for dynamical systems.

The list of modules is pretty long, but the most important are:

Basic modules:

- · krak a portable graphics kernel for very primitive drawing in the graphical window. Very easy to start with.
- interval template written interval arithmetic, supports double, long double and multiprecision. It can be
 extended to any arithmetic type for which we can implement arithmetic operations and rounding.
- vectalg and matrixAlgorithms a flexible template implementation of basic operations and algorithms for dense vectors and matrices (with integer, floating points and various interval coefficients).

Modules for dynamical systems:

- map computation of values and derivatives of maps. It is also the core for the solvers in dynsys module.
- dynsys various nonrigorous and rigorous solvers to ODEs, for computations of the solutions and partial derivatives wrt initial conditions up to arbitrary order.
- · geomset, dynset various representations of sets and Lohner-type algorithms.
- · poincare computation of Poincare maps and their derivatives; both rigorous and nonrigorous.
- · diffIncl rigorous computations of the solutions to differential inclusions.

Modules for computation of homology:

 Currently developed and recommended homological software is based on various reduction algorithms. The <u>RedHom</u> homology project is the official subproject of the CAPD library.

http://capd.ii.uj.edu.pl

Computer Assisted Proofs in Dynamics
- $C^0 C^1 C^r$ ODE solvers
- Poincaré maps and their *r*-th order derivatives
- Differential inclusions
- supports: double, long double, multiprecision, interval, mpfr-intervals

Some applications:

• C⁰-computations;

chaotic dynamics for many textbook systems, bifurcations for reversible systems

• C¹-computations;

periodic orbits (in quite high dimensions, like 300 for the N-body problem), hyperbolicity, homoclinic and heteroclinic solutions for ODEs both to equilibria and periodic solutions

• C²-computations;

cocoon bifurcations, homoclinic tangencies

• $C^3 - C^5$ computations;

- $C^0 C^1 C^r$ ODE solvers
- Poincaré maps and their r-th order derivatives
- Differential inclusions
- supports: double, long double, multiprecision, interval, mpfr-intervals

Some applications:

• C⁰-computations;

chaotic dynamics for many textbook systems, bifurcations for reversible systems

• C¹-computations;

periodic orbits (in quite high dimensions, like 300 for the N-body problem), hyperbolicity, homoclinic and heteroclinic solutions for ODEs both to equilibria and periodic solutions

• C²-computations;

cocoon bifurcations, homoclinic tangencies

• $C^3 - C^5$ computations;

- $C^0 C^1 C^r$ ODE solvers
- Poincaré maps and their *r*-th order derivatives
- Differential inclusions
- supports: double, long double, multiprecision, interval, mpfr-intervals

Some applications:

• C⁰-computations;

chaotic dynamics for many textbook systems, bifurcations for reversible systems

• C¹-computations;

periodic orbits (in quite high dimensions, like 300 for the N-body problem), hyperbolicity, homoclinic and heteroclinic solutions for ODEs both to equilibria and periodic solutions

• C²-computations;

cocoon bifurcations, homoclinic tangencies

• $C^3 - C^5$ computations;

- $C^0 C^1 C^r$ ODE solvers
- Poincaré maps and their *r*-th order derivatives
- Differential inclusions
- supports: double, long double, multiprecision, interval, mpfr-intervals

Some applications:

• C⁰-computations;

chaotic dynamics for many textbook systems, bifurcations for reversible systems

• C¹-computations;

periodic orbits (in quite high dimensions, like 300 for the N-body problem), hyperbolicity, homoclinic and heteroclinic solutions for ODEs both to equilibria and periodic solutions

• C²-computations;

cocoon bifurcations, homoclinic tangencies

• $C^3 - C^5$ computations;

- $C^0 C^1 C^r$ ODE solvers
- Poincaré maps and their r-th order derivatives
- Differential inclusions
- supports: double, long double, multiprecision, interval, mpfr-intervals

Some applications:

• C⁰-computations;

chaotic dynamics for many textbook systems, bifurcations for reversible systems

• C¹-computations;

periodic orbits (in quite high dimensions, like 300 for the N-body problem), hyperbolicity, homoclinic and heteroclinic solutions for ODEs both to equilibria and periodic solutions

• C²-computations;

cocoon bifurcations, homoclinic tangencies

• $C^3 - C^5$ computations;

- $C^0 C^1 C^r$ ODE solvers
- Poincaré maps and their *r*-th order derivatives
- Differential inclusions
- supports: double, long double, multiprecision, interval, mpfr-intervals

Some applications:

• C⁰-computations;

chaotic dynamics for many textbook systems, bifurcations for reversible systems

• C¹-computations;

periodic orbits (in quite high dimensions, like 300 for the N-body problem), hyperbolicity, homoclinic and heteroclinic solutions for ODEs both to equilibria and periodic solutions

• C²-computations;

cocoon bifurcations, homoclinic tangencies

• $C^3 - C^5$ computations;

Thank you for your attention

Děkuji vám za pozornost

D. Wilczak (Jagiellonian University, Poland) Rigorous computation of Poincaré maps