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Simulation and Interval Methods

. . . a little bit of controversy:

Computer simulation of differential equations is
a big success story of computational mathematics.

Numerical solvers can handle difficult problems
in terms of size and complexity.

In comparison, interval techniques not competitive at all.

Handling of uncertainty highly important topic
(viz. “uncertainty quantification”)

Again: in practice, interval techniques play a negligible role

What about verification?
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Diagnosis: Why?

One problem: over-approximation blows up
despite sophisticated counter-measures

(accumulation of wrapping effect)

Radically different approach, combining
reliability of interval methods with scalability of numerical techniques?

Why do we simulate differential equations?

General understanding of the system:
classical numerical methods (if used carefully) are usually o.k.

Specific question: safety verification
Does the system always stay in safe range?

. . . never reach an unsafe state?
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. . . never reach an unsafe state? 5 / 16
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Classical numerical methods cannot exclude this
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How to Represent the Certificate?
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Intuition: function V s.t.

I V is negative on Init, positive on Unsafe
I V decreases along the vector field on V = 0
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Problem Formalization
Given:

I an n-dimensional ODE ẋ = f (x), with
f : Rn → Rn a continuously differentiable function

I a box B ⊆ Rn

Find: a function V : Rn → R (a barrier function) s.t.

I ∀x ∈ Init . V (x) ≤ 0.

I ∀x ∈ Unsafe . V (x) ≥ 0.

I ∀x ∈ B . V (x) = 0⇒ ∇f V (x) < 0, where
∇f V (x) denotes the directional derivative ∇V (x)T f (x) of
V along the vector field f at point x .

Problem: search space: all such functions

How to reduce to finite-dimensional search space?

Intuition: parametric function, for example: ax2 + bxy + cy2.
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Reduced Problem Formalization

Given:

I an n-dimensional ODE ẋ = f (x), with
f : Rn → Rn a continuously differentiable function,

I a box B ⊆ Rn,

I a parametric function V : Rk × Rn → R (a barrier candidate)

Find: parameter values p ∈ Rk s.t.

I ∀x ∈ Init . V (p, x) ≤ 0

I ∀x ∈ Unsafe . V (p, x) ≥ 0

I ∀x ∈ B . V (p, x) = 0⇒ ∇f V (p, x) < 0

How to solve such a problem?
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Solving Barrier Conditions

This is a quantified constraint:

∃p

 ∀x ∈ Init . V (p, x) ≤ 0∧
∀x ∈ Unsafe . V (p, x) ≥ 0∧
∀x ∈ B . V (p, x) = 0⇒ ∇f V (p, x) < 0



If f and V are polynomials:

Theorem
The theory of real closed fields allows quantifier elimination [Tarski, 1951]

Problem: huge computational complexity
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Interval Methods

Interval methods help: [Ratschan, 2006, Bouissou, Chapoutot, Djaballah,
and Kieffer, 2014]

∃p

 ∀x ∈ Init . V (p, x) ≤ 0∧
∀x ∈ Unsafe . V (p, x) ≥ 0∧
∀x ∈ B . V (p, x) = 0⇒ ∇f V (p, x) < 0


Basic idea:

I grid parameter values p (i.e., try different barrier functions)

I prove universal quantifiers using interval methods

Problem: curse of dimensionality
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Avoiding Curse of Dimensionality (Ongoing Work)

∃p

 ∀x ∈ Init . V (p, x) ≤ 0∧
∀x ∈ Unsafe . V (p, x) ≥ 0∧
∀x ∈ B . V (p, x) = 0⇒ ∇f V (p, x) < 0


Basic idea: speed up grid search by local search in parameter values

Simplification: only third condition:

∀x ∈ B . V (p, x) = 0⇒ ∇f V (p, x) < 0

How to handle implication?

Parametrize {x ∈ B | V (p, x) = 0} = {πp(t) | t ∈ [0, 1]n−1}

Solve
∃p∀t ∈ [0, 1]n−1 . ∇f V (p, πp(t)) < 0
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Local Search in Parameter Values

∃p∀t ∈ [0, 1]n−1 . ∇f V (p, πp(t)) < 0

Notation: F (p, t) := ∇f V (p, πp(t))

∃p∀t ∈ [0, 1]n−1 . F (p, t) < 0

worst violation: given p, arg maxt∈[0,1]n−1 F (p, t)

if ∂F (p,t)
∂t positive/negative on [0, 1]n−1, then on the boundary

Fix corresponding parameters t̂ ∈ {0, 1}n−1, search for better p

line search a’la minp F (p, t̂)

if interval evaluation of ∂F (p,[0,1]n−1)
∂t has no definite sign, more complicated

Prototype implementation: no experiments yet.
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Conclusion

For analyzing ordinary differential equations
one does not necessarily have to solve them.

Advantage: interval methods without accumulation of wrapping effect

More experiments and development needed . . .
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