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Parametric Linear Systems
Consider the linear algebraic system

A(p) � x = b(p);
where

A(p) := A0 + kX
i=1Aipi; b(p) := b0 + kX

i=1 bipi
Ai 2 Rn�n; bi 2 Rn; i = 0; : : : ; k

the uncertain parameters pi vary within given intervals
p 2 [p] = ([p1; p1]; : : : ; [pk; pk])>:
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GOAL:
�puni := fx 2 Rn j (9p 2 [p])(A(p)x = b(p))g :

If �puni is bounded,in worst-case analysis of uncertain systems, outer interval estimation is sought.
Find [u] 2 IRn such that �puni � [u].

Interval Hull Solution, ��puni, is the minimal outer estimation:
��puni := \fu 2 IRn j �puni � [u]g:
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Parametric Solution Sets | Classi�cation
� Linear Boundary (the hull is attained at the interval end-points)

{ su�cient conditions in CAMWA 68, 2014
{ hull computation by :

end-point search, local/global monotonicity proof, etc.
� NonLinear Boundary, the hull is attained at the interval end-points

hull computation by: local/global monotonicity proof,
etc.

� NonLinear Boundary the hull is attained at points in the interior of the intervals
We propose methodology for hull computation

applicable to this case, too.
SWIM 2015 4



Parametric Hypersurfaces
De�nition. A hypersurface in n-dim projective space is an algebraic surfaceof dimension n� 1. It is then de�ned by a single equation f(x1; : : : ; xn) = 0.
De�nition. A hypersurface in n-dim space is called parametric hypersurface,x(p), if it is de�ned by n coordinate functions

xi(p) = xi(p1; : : : ; pn�1); i = 1; : : : ; n:
De�nition. Restricted PHS, x(p)jp2[p], is a piece (part) of PHS,

obtained for a speci�ed range of the parameters.
Consider PHSs x(p), x(p) 2 Rn, p 2 Rn�1, wherex(p) := A�1(p) � b(p) is the analytic solution of A(p)x = b(p), if it exists.
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Notations
Let p 2 Rk, A(p) 2 Rn�n, b(p) 2 Rn, K = f1; : : : ; kg, n � k.
For an index set � = f�1; : : : ; �kg, p� denotes (p�1 ; : : : ; p�k).
De�ne the set of all index sets of dimension n� 1 by

Q(n� 1; k) := fq = (�1; : : : ; �n�1) j q � Kg:
For a given q 2 Q(n� 1; k), de�ne ~q := K n q.

f�1gm := fx 2 Rm j jxj = (1; : : : ; 1)g
For [a] = [a; a] 2 IRm and u 2 f�1gm, au is de�ned by

faugi :=
8<
:ai if ui = �1
ai if ui = 1 ; i = 1; : : : ;m:
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Boundary of �p: @�p
E.Popova, BIT 48(2008):95{115.

Theorem 1. If A�1(p) exists,
@�p � [

q2Q(n�1;k)
[

u2f�1gk�n+1 x(pq; pu~q )jpq2[pq]:

If k � n� 1, �p is degenerate and
@�p = x(p)jp2[p] = �p:
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Interval Hull of �p: ��p

Corollary 1. If A�1(p) exists, then
��p = [

q2Q(n�1;k)
[

u2f�1gk�n+1 �
nx(pq; pu~q ) j pq 2 [pq]o :

xi(pq; pu~q ) is a rational function of n� 1 variables pq, of arbitrary degree.

Card(Sq2Q(n�1;k) Su2f�1gk�n+1 x(pq; pu~q )) = � kn�1�2k�n+1
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Interval Hull of �p by 2D projections

Corollary 2. If A�1(p) exists, then
��p = [

q2Q(1;k)
[

u2f�1gk�1 �
nx(pq; pu~q ) j pq 2 [pq]o :

xi(pq; pu~q ) is a rational function of 1 variable pq, of arbitrary degree.
�nxi(pq; pu~q ) j pq 2 [pq]o = � minpq2[pq]xi(pq; pu~q ); maxpq2[pq]xi(pq; pu~q )

�

Some software systems, like Mathematicar, can �nd the exact global extremum
for such problems with rational data.
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Example 1.
0
@2p1 p2 � 2
�p2 2p1

1
Ax =

0
@ p3�1=2

1
A ; p 2 ([23 ; 43]; [�1210 ; 2]; [�3; 3]):

A(p) is NOT strongly regular,all other methods fail.

hull =
0
@[�5:7996; 4:5178][�5:2639; 3:7678]

1
A
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Unboundedness of �puni

Theorem 2. �puni is unbounded, if NullSpace(A(p)) = f0gand there exist
1 � i � n, q 2 Q(n� 1; k) and u 2 f�1gk�n+1,

such that
maxpq2[pq]xi(pq; pu~q ) = 1

or minpq2[pq]xi(pq; pu~q ) = �1:

SWIM 2015 11



Empty/Unbounded �puni

Theorem 3.
� If NullSpace(A(p)) 6= f0g, then �puni is either empty or unbounded.
� If NullSpace(A(p)) 6= f0g and b(p) = 0 for some p 2 [p],

then �puni is unbounded.
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Example 2: Constraint Satisfaction
Garlo�, Granvilliers, Smith, LNCS 3478, 2005.

Constraint satisfaction techniques have to be improved in order to process
exponential-based models (often ill conditioned).

f(x; t) =
3X

j=1
x2j�1 exp(�x2jt)

Find x 2 R6, such that f(x; t0 + ih) = ~yi; i = 1; : : : ; 6:

* With a large initial box RealPaver computes no reduction.
* With 6 redundant constraints the initial box is reduced slightly.

Interval Prony's method is used as a preprocessing step to deliver a suitable initial box.
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Interval Prony's method (3-exp case)

f(x; t0 + ih) 2 [yi; yi], i = 1; : : : ; 6.
Since exponential sums may be very sensitive to changes in their parameters,
special emphasis is put on �nding sharp bounds for the solution set of

0
BB@
[y1] [y2] [y3]

[y2] [y3] [y4]

[y3] [y4] [y5]

1
CCA
0
BB@
�1

�2

�3

1
CCA = �

0
BB@
[y4]

[y5]

[y6]

1
CCA :

If the zeros of u3 + [�3]u2 + [�2]u+ [�1] are positive and separate,
�nd a tight enclosure of for the zero set by interval version of Cardano's formula.
Then, �nd sharp bounds for the solution set of

0
BB@

1 1 1

[u1] [u2] [u3]

[u1]
2 [u2]

2 [u3]
2

1
CCA
0
BB@
z1

z2

z3

1
CCA =

0
BB@
[y1]

[y2]

[y3]

1
CCA :
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Interval Prony's method (3-exp case)

Garlo� et al., 2006, solve the parametric interval system
0
BB@
y1 y2 y3

y2 y3 y4

y3 y4 y5

1
CCA
0
BB@
�1

�2

�3

1
CCA = �

0
BB@
y4

y5

y6

1
CCA

where yi 2 [yi; yi], i = 1; : : : ; 6, by:
i) the components of the symbolic solution are interval rational functions, e.g.,

�3 =
2y3y4y5 � y34 � y2y

2
5 + y6(y2y4 � y23)

y1(y3y5 � y24)� y22y5 + 2y2y3y4 � y33

ii) bound the range of �i, i = 1; 2; 3, by Bernstein expansion of the interval function.
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Guaranteed Interval Hull in . point
Combine: the method of PHSs in 2D space with

the Bernstein expansion method (or other guaranteed method)
to reduce the number of interval parameters

and obtain:
i) guaranteed tight enclosure of the hull in oating point
ii) expanded applicability to problems with

* bigger size
* larger parameter intervals

While Garlo� et al. solve the Hankel-type system for 10�6 interval radius,
the method of PHSs can be applied with radius close to the radius of singularity.

SWIM 2015 16



Properties of Our Methodology
1. Do NOT require regularity or strong regularity of A(p) on [p].Our approach shows a posteriori the regularity or singularity of A(p) on [p].
2. It reduces to solving constraint global optimization problems, wherethe objective is rational function of one variable.In this case the exact extrema can be found for exact databy available software (e.g., Mathematicar).
3. Delivers exact bounds for each component of �p

if and only if �p is bounded.
4. The methodology has exponential complexity.For k � n� 1, and each component of �p:2 global optimization problems with k variables,or k2k global optimization problems with 1 variable.
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Applicability of Our Methodology:
Solving real-life problems, where:
� small number of parameters, or o�ine analysis;
� systems with very large parameter intervals;
� bound(s) for single solution components are required;
� no special interval software is available.

Allows, in general:
� constructing benchmark examples (together with visualization);
� estimating the quality of newly designed numerical methods;
� proving the existence of a singular matrix;
� combination with other self-veri�ed methods;
� improving constraint satisfaction techniques by preprocessing, etc.
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