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Introduction

Observations:

• In Automatic, Robotic, Electronic or Mechanic, engineers
know very well their problems.
=⇒ Physical Sense

• In Optimization, the specification of each solver need to
classify a model: LP, NLP, MINLP, SDP, DFO,...
If the model cannot be classify: Modification, Adaptation,
Reformulation, ...
=⇒ Numerical Sense
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=⇒ Physical Sense

• In Optimization, the specification of each solver need to
classify a model: LP, NLP, MINLP, SDP, DFO,...
If the model cannot be classify: Modification, Adaptation,
Reformulation, ...
=⇒ Numerical Sense

Physical Solutions ⇐⇒ Numerical Solutions

=⇒ Goal: to Propose advanced optimization tools to construct the
best solver for their own problems.
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Contractor

Definition: Contractor

Let K ⊆ R
n be a ”feasible” region.

The operator CK : IRn → IR
n is a contractor for K if:

∀x ∈ IR
n
,

{

CK(x) ⊆ x, (contractance)
CK(x) ∩K = x ∩K. (completeness)

Example: Forward-Backward Algorithm
The operator C : IRn → IR

n is a contractor for the equation
f (x) = 0, if:

∀x ∈ IR
n
,

{

C(x) ⊆ x,

x ∈ x and f (x) = 0 ⇒ x ∈ C(x).
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General pattern for global optimization

General Design

(x̃ , f̃ ) = OptimCtc ([x], Cout , Cin, fcost):

⋆ Merging of a Branch&Bound Algorithm based on Interval
Analysis (spacialB&B) and a Set Inversion Via Interval
Analysis (SIVIA).

⋆ Cout , Cin: contractors designed by the user based on K and K,

⋆ Cf : a FwdBwd contractor based on {x : fcost(x) ≤ f̃ }

⋆ B: Largest first, smear evaluation, homemade,...
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General pattern for global optimization

The feasability test

Without equation or system,
How to prove that a point is a feasible point?
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General pattern for global optimization

The feasability test

Without equation or system,
How to prove that a point is a feasible point?

Prove that x ∈ K 6⇔ Prove that x 6∈ K

x is contracted by Cin ⇔ x ∈ K ⇔ Cout proves that x is in K.

Cin will eliminate all the part of a box which are not in K.
Cout will eliminate all the part of a box which are not in K.
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General pattern for global optimization

Global Optimization based on Contractor

• L := {(x, false)}, The boolean indicate if x is entirely feasible

• Do

1 Extract from L a element (z, b),
2 Bisect z following a bisector B: (z1, z2)
3 for j = 1 to 2 :

• if b = false (i.e. x is not completly feasible) then
Contract the infeasible region using Cout and Cf ,
Extract zfeas a feasible part of zj using Cin,
Insert (zfeas , true) in L.
Insert the rest (zj , false) in L.

• else (i.e. x is entirely feasible)
Contract zj using Cf ,
Try to find a local optimum without constraint in [zj ],
if succeed then Update f̃ insert (zj , true) in L.

• stopping criterion
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Mathematical Modelization

H∞ control synthesis under structural constraints

W1 W2

K G
-

+

constraint1 constraint2

Controler Dynamic System

? ?

w

z1 z2

y

H∞ control synthesis ⇒ Guarantee the robustness and stability
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Mathematical Modelization

H∞ control synthesis under structural constraints

W1 W2

K G
-

+

constraint1 constraint2

Controler Dynamic System

? ?

w

z1 z2

y

H∞ control synthesis ⇒ Guarantee the robustness and stability
||P||∞ = sup

ω

(σmax(P(jω)))

• Classical approach without structural constraint
→ LMI system, SDP opimization

• Classical approach with structural constraint
→ Nonsmooth local optimization
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Mathematical Modelization

Mathematical Modelization


















































min
k,γ

γ

∀ω,

∥

∥

∥

∥

W1(jω)

1 + G (jω)K (jω)

∥

∥

∥

∥

∞

≤ γ,

∀ω,

∥

∥

∥

∥

W2(jω)K (jω)

1 + G (jω)K (jω)

∥

∥

∥

∥

∞

≤ γ,

The closed-loop system must be stable.
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∥
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The closed-loop system must be stable.

Stability:

The system is stable iff its poles are strictly negative.
⇔

The roots of the denominator of 1
1+G(s)K(s) are strictly negative
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∥

∥

∥

∥

∞
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The closed-loop system must be stable.

Stability:

The system is stable iff its poles are strictly negative.
⇔

The roots of the denominator of 1
1+G(s)K(s) are strictly negative

=⇒ Routh-Hurwitz stability criterion
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Mathematical Modelization

Routh-Hurwitz stability criterion

P(s) = ans
n + an−1s

n−1 + · · · + a1s + a0

v1,1 = an v1,2 = an−2 v1,3 = an−4 v1,4 = an−6

v2,1 = an−1 v2,2 = an−3 v2,3 = an−5 v2,4 = an−7

v3,1 = −1
v2,1

∣

∣

∣

∣

v1,1 v1,2
v2,1 v2,2

∣

∣

∣

∣

v3,2 = −1
v2,1

∣

∣

∣

∣

v1,1 v1,3
v2,1 v2,3

∣

∣

∣

∣

v3,3 = −1
v2,1

∣

∣

∣

∣

v1,1 v1,4
v2,1 v2,4

∣

∣

∣

∣

. . .

v4,1 = −1
v3,1

∣

∣

∣

∣

v2,1 v2,2
v3,1 v3,2

∣

∣

∣

∣

v4,2 = −1
v3,1

∣

∣

∣

∣

v2,1 v2,3
v3,1 v3,3

∣

∣

∣

∣

. . . . . .

v5,1 = −1
v4,1

∣

∣

∣

∣

v3,1 v3,2
v4,1 v4,2

∣

∣

∣

∣

. . . . . . . . .

...
. . .

. . .
. . .
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If all the value of the first column are positive, all roots of P are
negative.
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Mathematical Modelization

Definition of the feasible set

K
1
ω

=
{

(k , γ, ω) :
∥

∥

∥

W1(iω)
1+G(iω)K(iω)

∥

∥

∥

∞

≤ γ

}

,

K
2
ω

=
{

(k , γ, ω) :
∥

∥

∥

W2(iω)K(iω)
1+G(iω)K(iω)

∥

∥

∥

∞

≤ γ

}

,
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K
1
ω

=
{

(k , γ, ω) :
∥

∥

∥

W1(iω)
1+G(iω)K(iω)

∥

∥

∥

∞

≤ γ

}

,

K
2
ω

=
{

(k , γ, ω) :
∥

∥

∥

W2(iω)K(iω)
1+G(iω)K(iω)

∥

∥

∥

∞

≤ γ

}

,

K
4 =

⋂

ω∈[10−2,102]K
1
ω
∩K

2
ω
.

Jordan Ninin Global Optimization SWIM, June 2015 13 / 26



Introduction Global Optimization Application to H∞ control synthesis under structural constraints Conclusion

Mathematical Modelization
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ω
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∥

∥
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W2(iω)K(iω)
1+G(iω)K(iω)

∥

∥

∥

∞

≤ γ

}

,

K
4 =

⋂

ω∈[10−2,102]K
1
ω
∩K

2
ω
.

The Routh’s condition / stability of the closed-loop system:

K
Routh = {(k , γ) :























an(k , γ) > 0,
an−1(k , γ) > 0,
v2,1(k , γ) > 0,

. . .

}.
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K
Routh = {(k , γ) :























an(k , γ) > 0,
an−1(k , γ) > 0,
v2,1(k , γ) > 0,

. . .

}.

The feasible set of our problem is K = K
4 ∩K

Routh.
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Contractor Modelization

Contractor Modelization: Properties

Let A a contractor for the equation f (x) = 0, and B a contractor
for the equation g(x) = 0, then:

Intersection, Composition

A ∩ B and A ◦ B are two contractors for the region:

{x ∈ R
n : f (x) = 0 AND g(x) = 0}

Union

A ∪ B is a contractor for the region:

{x ∈ R
n : f (x) = 0 OR g(x) = 0}
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Contractor Modelization

Contractor with Quantifiers

Let C be a contractor for a set Z = X× Y,
π

X
the projection of Z over X.

Contractor ForAll / Exists






















C∩Y(x) =
⋂

y∈Y

π
X
(C(x× {y})) ,

C∪Y(x) =
⋃

y∈Y

π
X
(C(x× {y})) .

Property

C∩Y is a contractor for {x : ∀y ∈ Y, (x , y) ∈ Z}
C∪Y is a contractor for {x : ∃y ∈ Y, (x , y) ∈ Z}.

Jordan Ninin Global Optimization SWIM, June 2015 15 / 26



Introduction Global Optimization Application to H∞ control synthesis under structural constraints Conclusion

Contractor Modelization

Contractor with Quantifiers

Let C be a contractor for a set Z = X× Y,
π

X
the projection of Z over X.

Contractor ForAll / Exists






















C∩Y(x) =
⋂

y∈Y

π
X
(C(x× {y})) ,

C∪Y(x) =
⋃

y∈Y

π
X
(C(x× {y})) .

Property

C∩Y is a contractor for {x : ∀y ∈ Y, (x , y) ∈ Z}
C∪Y is a contractor for {x : ∃y ∈ Y, (x , y) ∈ Z}.

Jordan Ninin Global Optimization SWIM, June 2015 15 / 26



Introduction Global Optimization Application to H∞ control synthesis under structural constraints Conclusion

Contractor Modelization

Contractor with Quantifiers

Let C be a contractor for a set Z = X× Y,
π

X
the projection of Z over X.

Contractor ForAll / Exists






















C∩Y(x) =
⋂

y∈Y

π
X
(C(x× {y})) ,

C∪Y(x) =
⋃

y∈Y

π
X
(C(x× {y})) .

Property

C∩Y is a contractor for {x : ∀y ∈ Y, (x , y) ∈ Z}
C∪Y is a contractor for {x : ∃y ∈ Y, (x , y) ∈ Z}.

Jordan Ninin Global Optimization SWIM, June 2015 15 / 26



Introduction Global Optimization Application to H∞ control synthesis under structural constraints Conclusion

Contractor Modelization

Contractor CtcForAll: X = {x : ∀y ∈ Y, (x , y) ∈ Z}

Y

X

yi

CZ(X × {yi})

CX(X)

y1

y2

y3
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Contractor Modelization

Contractor CtcExist: X = {x : ∃y ∈ Y, (x , y) ∈ Z}

Y = Y1 ∪ Y2 ∪ Y3 ∪ Y4

X

Y4

CZ(X × Yi)

CX(X)

Y1

Y2

Y3
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Contractor Modelization

Construction of Contractors Cout of the feasible set K

Cout will eliminate all the part of a box which are not in K.

K
1
ω

=
{

(k , γ, ω) :
∥

∥

∥

W1(iω)
1+G(iω)K(iω)

∥

∥

∥

∞

≤ γ

}

,

K
2
ω

=
{

(k , γ, ω) :
∥

∥

∥

W2(iω)K(iω)
1+G(iω)K(iω)

∥

∥

∥

∞

≤ γ

}

,

K =





⋂

ω∈[10−2,102]

K
1
ω
∩K

2
ω



 ∩K
Routh.

Jordan Ninin Global Optimization SWIM, June 2015 18 / 26



Introduction Global Optimization Application to H∞ control synthesis under structural constraints Conclusion

Contractor Modelization

Construction of Contractors Cout of the feasible set K

Cout will eliminate all the part of a box which are not in K.

K =





⋂

ω∈[10−2,102]

K
1
ω
∩K

2
ω



 ∩K
Routh.

Jordan Ninin Global Optimization SWIM, June 2015 18 / 26



Introduction Global Optimization Application to H∞ control synthesis under structural constraints Conclusion

Contractor Modelization

Construction of Contractors Cout of the feasible set K

Cout will eliminate all the part of a box which are not in K.

K =





⋂

ω∈[10−2,102]

K
1
ω
∩K

2
ω



 ∩K
Routh.

1 Create the contractor C1, C2 and CRouth based on K
1
ω
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Contractor Modelization

First Application with second order dynamic system

W1 W2

K G
-

+

constraint1 constraint2

Controler Dynamic System

? ?

w

z1 z2

y

The transfer function of the dynamic system:

G (s) =
1

s2 + 1.4s + 1
, K (s) = kp +

ki
s
+

kd s

1 + s
.

W1(s) =
s + 100

100s + 1
, W2(s) =

10s + 1

s + 10
.
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Contractor Modelization

Overview of the equation
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∥

∥

∥
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w2 (w2+1.0) (w2+10000.0) (25.0w4

−1.0w2+25.0)
(10000.0w2+1.0)f1(k,γ,ω)

≤ γ.
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Contractor Modelization

Results with hinfsyn of Matlab

10 -2 10 -1 10 0 10 1 10 2
-120

-100

-80

-60

-40

-20

0

20

40

S = 1/(1+L)
GAM/W1
T=L/(1+L)
GAM*G/W2

Singular Values

Frequency (rad/s)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

γ = 1.5887

Jordan Ninin Global Optimization SWIM, June 2015 22 / 26



Introduction Global Optimization Application to H∞ control synthesis under structural constraints Conclusion

Contractor Modelization

Results with hinfstruct of Matlab

10 -2 10 -1 10 0 10 1 10 2
-120

-100

-80

-60

-40

-20

0

20

40

S = 1/(1+L)
GAM/W1
T=L/(1+L)
GAM*G/W2

Singular Values

Frequency (rad/s)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

γ = 2.1414

Jordan Ninin Global Optimization SWIM, June 2015 23 / 26



Introduction Global Optimization Application to H∞ control synthesis under structural constraints Conclusion

Contractor Modelization

Results with Global Optimization of IBEX
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Conclusion

Contractor Programming:
• Generate the Modelization and the adapted Solver in the
same time,

• Consider heterogeneous constraints without changing the
solver,

• Give all the tools to the expert of the application.
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Conclusion

IBEX
http://www.ibex-lib.org

• Interval Arithmetic Interface: Filib, Gaol, Profil/BIAS.
• Affine Arithmetic.
• Linear Solver Interface: Soplex, CPLEX, CLP.
• Symbolic and Automatic Differentiation.
• AMPL Interface.
• Reliable computation of Ordinary Differential Equation
(DynIBEX)

• CSP solver, Global Optimization solver.
• Available on Linux, MacOSX and Windows.

Fork it on GitHub
http://github.com/ibex-team/ibex-lib
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