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Introduction

Introduction

Observations:

e In Automatic, Robotic, Electronic or Mechanic, engineers
know very well their problems.
= Physical Sense

e In Optimization, the specification of each solver need to
classify a model: LP, NLP, MINLP, SDP, DFO,...
If the model cannot be classify: Modification, Adaptation,
Reformulation, ...
= Numerical Sense
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Observations:

e In Automatic, Robotic, Electronic or Mechanic, engineers
know very well their problems.
= Physical Sense

e In Optimization, the specification of each solver need to
classify a model: LP, NLP, MINLP, SDP, DFO,...
If the model cannot be classify: Modification, Adaptation,
Reformulation, ...
= Numerical Sense

Physical Solutions <= Numerical Solutions

— Goal: to Propose advanced optimization tools to construct the
best solver for their own problems.
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Global Optimization
[ ]

Contractor

Definition: Contractor

Let K C R" be a "feasible” region.

The operator Ck : IR” — TR” is a contractor for K if:

Cr(x) C x, (contractance)

n
Vx € IR", { Ck(x) NK =xNK. (completeness)

Example: Forward-Backward Algorithm
The operator C : IR"” — TIR" is a contractor for the equation
f(x)=0,if:

C(x) C x,

Vx IR ’{ x € x and f(x) = 0= x € C(x).
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Global Optimization
[ leJe]e]

General pattern for global optimization

General Design

(%, ?) = OptimCtc ([x], Cout, Cin, feost):

* Merging of a Branch&Bound Algorithm based on Interval
Analysis (spacialB&B) and a Set Inversion Via Interval
Analysis (SIVIA).

* Cout, Cin: contractors designed by the user based on K and K,
* Cr: a FwdBwd contractor based on {x : feost(x) < ?}

* B: Largest first, smear evaluation, homemade,...
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Global Optimization
[e]e] o]

General pattern for global optimization

The feasability test

Without equation or system,
How to prove that a point is a feasible point?
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Global Optimization
[e]e] o]

General pattern for global optimization

The feasability test

Without equation or system,
How to prove that a point is a feasible point?

Prove that x c K #  Prove that x ¢ K
x is contracted by Cij, & x € K < Coyur proves that x is in K.

Cin will eliminate all the part of a box which are not in K.
Cout will eliminate all the part of a box which are not in K.
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Global Optimization
[e]e]e] )

General pattern for global optimization

Global Optimization based on Contractor

o L :={(x,false)}, The boolean indicate if x is entirely feasible
e Do

@ Extract from L a element (z, b),
@ Bisect z following a bisector B: (z1,2,)
© forj=1to2:
e if b= false (i.e. x is not completly feasible) then
Contract the infeasible region using Cou: and Cr,
Extract zr.s a feasible part of z; using Cin,
Insert (zfeas, true) in L.
Insert the rest (z;, false) in L.
e else (i.e. x is entirely feasible)
Contract z; using Cr,
Try to find a local optimum without constraint in [z;],
if succeed then Update f insert (z;, true) in L.

e stopping criterion
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Mathematical Modelization

H. control synthesis under structural constraints

constraint, constraint,

zZ1 Z2
— —
Wi Wy
v ( y
K G
Controler Dynamic System
77

Hoo control synthesis = Guarantee the robustness and stability
||Plloc = sup(omax(P(jw)))
w

e Classical approach without structural constraint
— LMI system, SDP opimization

e Classical approach with structural constraint
— Nonsmooth local optimization

Jordan Ninin Global Optimization SWIM, June 2015



Application to Hoo control synthesis under structural constraints
[o] le]e}

Mathematical Modelization

Mathematical Modelization

min v

k,y

o

V ) . . < )

N H1+G(Jw)K(Jw) o

Wa(jw)K (jw)

v <

o el =

The closed-loop system must be stable.
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Application to Hoo control synthesis under structural constraints
[o] le]e}

Mathematical Modelization

Mathematical Modelization

min v

k,y
V ) . . < )

N HHG(Jw)K(Jw) o

Wa(jw)K (jw) H
VOJ, - . < Y
' 1+ Gw)K(jw) ||
L The closed-loop system must be stable.

The system is stable iff its poles are strictly negative.
=
. 1 . .
The roots of the denominator of TTCERE) 2re strictly negative
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Application to Hoo control synthesis under structural constraints
[o] le]e}

Mathematical Modelization

Mathematical Modelization

min v

k,y
V ) . . < )

N HHG(Jw)K(Jw) o

Wa(jw)K (jw) H
VOJ, - . < Y
' 1+ Gw)K(jw) ||
L The closed-loop system must be stable.

The system is stable iff its poles are strictly negative.
=
. 1 . .
The roots of the denominator of TTCERE) 2re strictly negative

—> Routh-Hurwitz stability criterion
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Application to Hoo control synthesis under structural constraints
[e]e] T}

Mathematical Modelization

Routh-Hurwitz stability criterion

P(s) = ans" + ap_15" 1 + -+ a1s + ag

V1,1 = an V1,2 = an—2 V1,3 = an—4 V1,4 = an—6
V2,1 = ap—1 V22 = ap—3 V23 = apn—5 V2.4 = ap—7
-1 |V, V12 _ -1 |v11 w13 _ -1 |v11 V14
V3,1 = o, V3,2 = V33 =
2,1 |21 V2.2 2,1 |V2,1 V2,3 2,1 |V2,1 V2,4
-1 V21 V22 -1 V21 V3
Va1 = = ’ Voo = = ’
3,1 V3,1 V32 31 V3,1 V33
v q = —L V31 V32
’ VAl |va 1 V42
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Application to Hoo control synthesis under structural constraints
[e]e] T}

Mathematical Modelization

Routh-Hurwitz stability criterion

P(s) = aps" + an_1" 1+ +ais+ag

V1,1 = an V12 = ap—2 V13 = an—4 V1,4 = an—6
V2,1 = an—1 V2,2 = an—3 V2,3 = an—5 V2,4 = an-7
_ —1|v11 V12 _ -1 |v1i1 V13 _ -1 (v11 V14
V3,1 = V32 = o V33 =
21 |v2,1 V2.2 2,1 |v2,1 V2,3 21 |v2,1 V2.4
-1 V2,1 V22 -1 V21 W23
Va1 = ' Vao = ’ ’
31 V31 V32 31 V31 V33
v q = =L V31 V32
% V4,1 V4,1 V4 2

If all the value of the first column are positive, all roots of P are

negative.
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Application to Hoo control synthesis under structural constraints
[e]ele] ]

Mathematical Modelization

Definition of the feasible set

KL = {(knw) || i, <7}
K2 = {(kne) « || <}
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Application to Hoo control synthesis under structural constraints
[e]ele] ]

Mathematical Modelization

Definition of the feasible set

K} ={(k,%u)) : H%

IN
=2
—

HOO

Wsr (iw)K (iw
K2 :{(k,%w) i ‘%

IN
2
——

HOO

K* = MNwero-2,107] Ko NKZ.
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Application to Hoo control synthesis under structural constraints
[e]ele] ]

Mathematical Modelization

Definition of the feasible set

K} ={(k,%u)) : H%

IN
=2
—

HOO

Wsr (iw)K (iw
K2 :{(k,%w) i ‘%

IN
2
——

HOO

K* = MNwero-2,107] Ko NKZ.

The Routh’s condition / stability of the closed-loop system:

an(k,’)’) > 0’
an-1(k,7v) >0,
KRouth — {(k,’)/) . V2,1(k77) > O’ }

The feasible set of our problem is K = K* n KRouth,
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Application to Hoo control synthesis under structural constraints
@®0000000000

Contractor Modelization

Contractor Modelization: Properties

Let A a contractor for the equation f(x) = 0, and B a contractor
for the equation g(x) = 0, then:

Intersection, Composition

AN B and Ao B are two contractors for the region:

{xeR" : f(x) =0 AND g(x) =0}

v
Union

AU B is a contractor for the region:

{xeR" : f(x) =0 OR g(x) =0}
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Application to Hoo control synthesis under structural constraints
O@000000000

Contractor Modelization

Contractor with Quantifiers

Let C be a contractor for aset Z =X x Y,
m, the projection of Z over X.

Contractor ForAll / Exists

C¥(x) = () m (Clx % {¥})).

yeY

C(x) = | m (Clx x {¥})).

yeY

Property

C™" is a contractor for {x : Vy € Y,(x,y) € Z}
CYY is a contractor for {x : Iy € Y, (x,y) € Z}.
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Application to Hoo control synthesis under structural constraints
O0e00000000

Contractor Modelization

Contractor CtcForAll: X ={x : Vy € Y, (x,y) € Z}

Yi 4

Y3 4

Y2 4

Y 4

H cx(x)
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Application to Hoo control synthesis under structural constraints
[eJe]e] lelelelele]e]e]

Contractor Modelization

Contractor CtcExist: X = {x : dy € Y,(x,y) € Z}

Y=YUuY,uY;UY,

t ; e Ca(X xY))
+ . | .
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Application to Hoo control synthesis under structural constraints
[eJe]ele] Telelele]e]e]
Contractor Modelization

Construction of Contractors C,,; of the feasible set K

Cout Will eliminate all the part of a box which are not in K.

KL, = {(k,%W) : H%Hw

IN
2
——

K2 = {(k,%W) : ‘%Hw

IN
2
——

K = (| KLNKZ | nKReuth,
we[10-2,102]
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Contractor Modelization

Construction of Contractors C,,; of the feasible set K

Cout Will eliminate all the part of a box which are not in K.

K= m Kl N K2 N KRouth.
we[10—2,102]

@ Create the contractor C1, C» and Cgroutp based on KE}J, Ki and
KRouth:

Contractor based on inequality system: Forward-Backward
algorithm, HC4-revise, PolytopeHull, ...
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Application to Hoo control synthesis under structural constraints
0O0000e00000
Contractor Modelization

Construction of Contractors Cj, of the unfeasible set K

Cin will eliminate all the part of a box which are not in K.

KL = {(ky.0) H%H 0t
K2 = {(kmo) « || 2] >}
K=

U KL UK2 | U KRouth
W W N
we[10-2,102]
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Application to Hoo control synthesis under structural constraints
0O0000e00000

Contractor Modelization

Construction of Contractors Cj, of the unfeasible set K

Cin will eliminate all the part of a box which are not in K.

K = J KLUKZ | UKRouth,
we[1072,102]

@ Create the contractor Cy, (5 and Cg,;; based on KZ, K2 and
K Routh-
Contractor based on inequality system: Forward-Backward
algorithm, HC4-revise, PolytopeHull, ...

® Union: C5(k,v,w) = Cy(k, v,w) U Cs(k,v,w).

©® CtcExist: C¥(k,v) = U C3(k,v,w).

we[10-2,102]
@ Union: C,’n = CUw U Cm.
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Application to Hoo control synthesis under structural constraints
O00000@0000

Contractor Modelization

First Application with second order dynamic system

constrainty constraints

Z1 22
— —
Wi Ws
wo o+ ’-' Y
K G
Controler Dynamic System
77

The transfer function of the dynamic system:

i 1 . k,' de
G(S)_s2—|—1.4s+1’ K(S)_kp—i_;—i_l—l—s'
s+ 100 10s+1
W = W- = .
1) = To0s 1 17 2(s) = 5710
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Application to Hoo control synthesis under structural constraints
0O000000e000

Contractor Modelization

Overview of the equation

Wl(jw)
14 G(jw)K(jw)

—

Vw € [10™

| <
o0

w? (w?+1.0) (w?+10000.0) (25.0 w*—1.0 w?+25. 0)
(10000.0 w2+1.0)A (k,7,w)

Yw € [1072,102],
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Application to Hoo control synthesis under structural constraints
0O000000e000

Contractor Modelization

Overview of the equation

T+ (%g;i () Hoo =7

—

Yw € [1072,102],

2 (w241.0) (w2+10000.0) (25.0 w*—1.0 w?+25.0)

-2 1021 ¥
Vw € [1077,107], (10000.0 wZ+1.0)f (K. 7.0)

<7

fi(k,v,w) = 25.0kd®w* + 25.0kp?w? 4 25.0kp?w* —
1.0ki (50.0kdw? + 70.0w? + 70.0w*) + ki® (25.0w? + 25.0) +
120.0kdw* — 50.0kdw® + 50.0kpw? — 50.0kpw® + 25.0w? +
24.0w* + 24.0w® + 25.0w® + 50.0kdkpw?*
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Application to Hoo control synthesis under structural constraints
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Contractor Modelization

Overview of the equation

T+ (%g;i () Hoo =7

—

Yw € [1072,102],

2 (w241.0) (w2+10000.0) (25.0 w*—1.0 w?+25.0)

-2 1021 ¥
Vw € [1077,107], (10000.0 w2+1.0)A (k,7,w)

<7

fi(k,v,w) = 25.0kd®w* + 25.0kp?w? 4 25.0kp?w* —
1.0ki (50.0kdw? + 70.0w? + 70.0w*) + ki® (25.0w? + 25.0) +
120.0kdw* — 50.0kdw® + 50.0kpw? — 50.0kpw® + 25.0w? +
24.0w* + 24.0w® + 25.0w® + 50.0kdkpw?*
Yu € [-2,2],w = 10V,
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Application to Hoo control synthesis under structural constraints
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Contractor Modelization

Results with hinfsyn of Matlab

Singular Values
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Contractor Modelization

Application to Hoo control synthesis under structural constraints
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Results with hinfstruct of Matlab

Singular Values (dB)
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Contractor Modelization

Application to Hoo control synthesis under structural constraints
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Results with Global Optimization of IBEX

Singular Values (dB)

Jordan Ninin

-120

Singular Values

. _.—] === GAMMWL

S =1/(1+L)

T |
P~ P —-— = GAMG/W2

102

10

10° 10t 102
Frequency (rad/s)

y =2.1414

= same result as with hinfstruct,
but with a global optimality proof!

Global Optimization
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Results with Global Optimization of IBEX
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Conclusion

Conclusion

Contractor Programming:

e Generate the Modelization and the adapted Solver in the
same time,

e Consider heterogeneous constraints without changing the
solver,

e Give all the tools to the expert of the application.
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Conclusion

Conclusion

IBEX

http://www.ibex-1lib.org

e Interval Arithmetic Interface: Filib, Gaol, Profil/BIAS.

e Affine Arithmetic.

e Linear Solver Interface: Soplex, CPLEX, CLP.

e Symbolic and Automatic Differentiation.

e AMPL Interface.

e Reliable computation of Ordinary Differential Equation
(DynIBEX)

e CSP solver, Global Optimization solver.

e Available on Linux, MacOSX and Windows.

Fork it on GitHub

http://github.com/ibex-team/ibex-1ib
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