Global Optimization based on Contractor Programming: Application to H_{∞} synthesis

Jordan Ninin

with Dominique Monnet and Benoit Clement

LAB-STICC / ENSTA-Bretagne Brest, France

Prague, June 2015

Observations:

- In Automatic, Robotic, Electronic or Mechanic, engineers know very well their problems.
 - \implies Physical Sense
- In Optimization, the specification of each solver need to classify a model: LP, NLP, MINLP, SDP, DFO,...
 If the model cannot be classify: Modification, Adaptation, Reformulation, ...
 - \implies Numerical Sense

Observations:

- In Automatic, Robotic, Electronic or Mechanic, engineers know very well their problems.
 - \implies Physical Sense
- In Optimization, the specification of each solver need to classify a model: LP, NLP, MINLP, SDP, DFO,...
 If the model cannot be classify: Modification, Adaptation, Reformulation, ...
 - \implies Numerical Sense

 $Physical \ Solutions \iff Numerical \ Solutions$

Observations:

- In Automatic, Robotic, Electronic or Mechanic, engineers know very well their problems.
 - \implies Physical Sense
- In Optimization, the specification of each solver need to classify a model: LP, NLP, MINLP, SDP, DFO,...
 If the model cannot be classify: Modification, Adaptation, Reformulation, ...

 \implies Numerical Sense

Physical Solutions \iff Numerical Solutions

 \implies Goal: to Propose advanced optimization tools to construct the best solver for their own problems.

Global Optimization	Application to H_∞ control synthesis under structura
00000	0000000000000

Conclusion

Contents

1 Global Optimization

Contractor General pattern for global optimization

2 Application to H_{∞} control synthesis under structural constraints Mathematical Modelization Contractor Modelization

Let $\mathbb{K} \subseteq \mathbb{R}^n$ be a "feasible" region.

The operator $\mathcal{C}_{\mathbb{K}} : \mathbb{IR}^n \to \mathbb{IR}^n$ is a contractor for \mathbb{K} if:

$$\forall \mathbf{x} \in \mathbb{IR}^n, \begin{cases} \mathcal{C}_{\mathbb{K}}(\mathbf{x}) \subseteq \mathbf{x}, & \text{(contractance)} \\ \mathcal{C}_{\mathbb{K}}(\mathbf{x}) \cap \mathbb{K} = \mathbf{x} \cap \mathbb{K}. & \text{(completeness)} \end{cases}$$

Example: Forward-Backward Algorithm The operator $C : \mathbb{IR}^n \to \mathbb{IR}^n$ is a contractor for the equation f(x) = 0, if:

$$\forall \mathbf{x} \in \mathbb{IR}^n, \left\{ \begin{array}{l} \mathcal{C}(\mathbf{x}) \subseteq \mathbf{x}, \\ x \in \mathbf{x} \text{ and } f(x) = 0 \Rightarrow x \in \mathcal{C}(\mathbf{x}). \end{array} \right.$$

$$(\tilde{x}, \tilde{f}) = \mathbf{OptimCtc} ([\mathbf{x}], \mathcal{C}_{out}, \mathcal{C}_{in}, f_{cost})$$
:

- ★ Merging of a Branch&Bound Algorithm based on Interval Analysis (spacialB&B) and a Set Inversion Via Interval Analysis (SIVIA).
- \star $\mathcal{C}_{\textit{out}},$ $\mathcal{C}_{\textit{in}}:$ contractors designed by the user based on $\mathbb K$ and $\overline{\mathbb K},$
- * C_f : a FwdBwd contractor based on $\{x : f_{cost}(x) \leq \tilde{f}\}$
- \star \mathcal{B} : Largest first, smear evaluation, homemade,...

$$(\tilde{x}, \tilde{f}) = \mathbf{OptimCtc} ([\mathbf{x}], \mathcal{C}_{out}, \mathcal{C}_{in}, f_{cost})$$
:

- ★ Merging of a Branch&Bound Algorithm based on Interval Analysis (spacialB&B) and a Set Inversion Via Interval Analysis (SIVIA).
- * \mathcal{C}_{out} , \mathcal{C}_{in} : contractors designed by the user based on \mathbb{K} and $\overline{\mathbb{K}}$,
- * C_f : a FwdBwd contractor based on $\{x : f_{cost}(x) \leq \tilde{f}\}$
- $\star~\mathcal{B}:$ Largest first, smear evaluation, homemade,...

$$(\tilde{x}, \tilde{f}) = \mathbf{OptimCtc} ([\mathbf{x}], \mathcal{C}_{out}, \mathcal{C}_{in}, f_{cost})$$
:

- ★ Merging of a Branch&Bound Algorithm based on Interval Analysis (spacialB&B) and a Set Inversion Via Interval Analysis (SIVIA).
- \star $\mathcal{C}_{\textit{out}},$ $\mathcal{C}_{\textit{in}}:$ contractors designed by the user based on $\mathbb K$ and $\overline{\mathbb K},$
- * C_f : a FwdBwd contractor based on $\{x : f_{cost}(x) \leq \tilde{f}\}$
- $\star~\mathcal{B}:$ Largest first, smear evaluation, homemade,...

	Global Optimization	Application to H_∞ control synthesis under structural constraints 000000000000000000000000000000000000	Conclusion	
General pattern for global optimization				
The feasability test				

Without equation or system,

How to prove that a point is a feasible point?

	Global Optimization	Application to H_∞ control synthesis under structural constraints 000000000000000000000000000000000000	Conclusion	
General pattern for global optimization				
The feasability test				

Without equation or system,

How to prove that a point is a feasible point?

Prove that $x \in \mathbb{K} \quad \Leftrightarrow \quad \text{Prove that } x \notin \overline{\mathbb{K}}$

	Global Optimization ○○○●○	Application to H_∞ control synthesis under structural constraints 000000000000000000000000000000000000	Conclusion	
General pattern for global optimization				
The feasability test				

Without equation or system,

How to prove that a point is a feasible point?

Prove that $x \in \mathbb{K} \quad \Leftrightarrow \quad$ Prove that $x \notin \overline{\mathbb{K}}$

x is contracted by $C_{in} \Leftrightarrow x \in \mathbb{K} \Leftrightarrow C_{out}$ proves that x is in \mathbb{K} .

 C_{in} will eliminate all the part of a box which **are not** in $\overline{\mathbb{K}}$. C_{out} will eliminate all the part of a box which **are not** in \mathbb{K} .

General pattern for global optimization

- $\mathcal{L} := \{(\mathbf{x}, \textit{false})\}$, The boolean indicate if \mathbf{x} is entirely feasible
- Do
 - **1** Extract from \mathcal{L} a element (\mathbf{z}, b) ,
 - **2** Bisect **z** following a bisector \mathcal{B} : $(\mathbf{z}_1, \mathbf{z}_2)$
 - **3** for *j* = 1 to 2 :
 - if b = false (i.e. x is not completly feasible) then Contract the infeasible region using C_{out} and C_f, Extract z_{feas} a feasible part of z_j using C_{in}, Insert (z_{feas}, true) in L. Insert the rest (z_j, false) in L.
 - else (i.e. x is entirely feasible)
 - Contract \mathbf{z}_j using \mathcal{C}_f ,
 - Try to find a local optimum without constraint in $[\mathbf{z}_j]$,
 - if succeed then Update \tilde{f} insert (z_j , true) in \mathcal{L} .
- stopping criterion

General pattern for global optimization

- $\mathcal{L} := \{(\mathbf{x}, \textit{false})\}$, The boolean indicate if \mathbf{x} is entirely feasible
- Do
 - **1** Extract from \mathcal{L} a element (\mathbf{z}, b) , 2 Bisect z following a bisector \mathcal{B} : (z_1, z_2) **3** for i = 1 to 2 : • if *b* = false (i.e. **x** is not completly feasible) then Contract the infeasible region using C_{out} and C_{f} , Extract \mathbf{z}_{feas} a feasible part of \mathbf{z}_i using \mathcal{C}_{in} , Insert (z_{feas} , true) in \mathcal{L} . Insert the rest (z_i , *false*) in \mathcal{L} . else (i.e. x is entirely feasible) Contract \mathbf{z}_i using \mathcal{C}_f , Try to **find** a local optimum without constraint in $[\mathbf{z}_i]$, if succeed then Update \tilde{f} insert (z_i , true) in \mathcal{L} .
- stopping criterion

General pattern for global optimization

- $\mathcal{L} := \{(\mathbf{x}, \textit{false})\}$, The boolean indicate if \mathbf{x} is entirely feasible
- Do
 - **1** Extract from \mathcal{L} a element (\mathbf{z}, b) ,
 - **2** Bisect **z** following a bisector \mathcal{B} : $(\mathbf{z}_1, \mathbf{z}_2)$
 - **3** for *j* = 1 to 2 :
 - if b = false (i.e. x is not completly feasible) then Contract the infeasible region using Cout and Cf, Extract z_{feas} a feasible part of z_j using C_{in}, Insert (z_{feas}, true) in L. Insert the rest (z_j, false) in L.
 else (i.e. x is entirely feasible) Contract z_j using C_f,
 - Try to **find** a local optimum without constraint in $[\mathbf{z}_j]$, if *succeed* then Update \tilde{f} insert $(\mathbf{z}_i, true)$ in \mathcal{L} .
- stopping criterion

General pattern for global optimization

- $\mathcal{L} := \{(\mathbf{x}, \textit{false})\}$, The boolean indicate if \mathbf{x} is entirely feasible
- Do
 - **1** Extract from \mathcal{L} a element (\mathbf{z}, b) ,
 - **2** Bisect **z** following a bisector \mathcal{B} : $(\mathbf{z}_1, \mathbf{z}_2)$
 - **3** for *j* = 1 to 2 :
 - if b = false (i.e. x is not completly feasible) then Contract the infeasible region using C_{out} and C_f, Extract z_{feas} a feasible part of z_j using C_{in}, Insert (z_{feas}, true) in L. Insert the rest (z_i, false) in L.
 - else (i.e. x is entirely feasible)
 - Contract \mathbf{z}_j using \mathcal{C}_f ,
 - Try to find a local optimum without constraint in $[\mathbf{z}_j]$,
 - if succeed then Update \tilde{f} insert $(\mathbf{z}_j, true)$ in \mathcal{L} .
- stopping criterion

Global Optimization

Contents

Global Optimization

Contractor General pattern for global optimization

Application to H_{∞} control synthesis under structural constraints Mathematical Modelization Contractor Modelization

Global Optimization

Application to H_{∞} control synthesis under structural constraints Conclus

Mathematical Modelization

H_{∞} control synthesis under structural constraints

 H_∞ control synthesis \Rightarrow Guarantee the robustness and stability

Global Optimization

Application to H_{∞} control synthesis under structural constraints Conclus

Mathematical Modelization

H_{∞} control synthesis under structural constraints

 H_{∞} control synthesis \Rightarrow Guarantee the robustness and stability $||P||_{\infty} = \sup_{\omega} (\sigma_{\max}(P(j\omega)))$

Global Optimization

Application to H_{∞} control synthesis under structural constraints Conclusi

Mathematical Modelization

H_{∞} control synthesis under structural constraints

 H_{∞} control synthesis \Rightarrow Guarantee the robustness and stability $||P||_{\infty} = \sup_{\omega} (\sigma_{\max}(P(j\omega)))$

• Classical approach without structural constraint \rightarrow LMI system, SDP opimization

Global Optimization

Application to H_{∞} control synthesis under structural constraints — Conclus •00000000000000

Mathematical Modelization

H_{∞} control synthesis under structural constraints

 H_{∞} control synthesis \Rightarrow Guarantee the robustness and stability $||P||_{\infty} = \sup_{\omega} (\sigma_{\max}(P(j\omega)))$

- Classical approach without structural constraint \rightarrow LMI system, SDP opimization
- Classical approach with structural constraint
 → Nonsmooth local optimization

Global Optimization

Mathematical Modelization

Mathematical Modelization

$$\begin{array}{l} & \gamma \\ \forall \omega, & \left\| \frac{W_1(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma, \\ \forall \omega, & \left\| \frac{W_2(j\omega)K(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma, \end{array} \\ \end{array}$$
The closed-loop system must be *stable*.

Global Optimization

Mathematical Modelization

Mathematical Modelization

$$\begin{array}{l} \min_{\mathbf{k},\gamma} & \gamma \\ \forall \omega, & \left\| \frac{W_1(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma, \\ \forall \omega, & \left\| \frac{W_2(j\omega)K(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma, \end{array}$$

The closed-loop system must be *stable*.

Stability:

The system is stable iff its poles are strictly negative. \Leftrightarrow The roots of the denominator of $\frac{1}{1+G(s)K(s)}$ are strictly negative

Global Optimization

Mathematical Modelization

Mathematical Modelization

$$\begin{array}{l} \min_{\mathbf{k},\gamma} & \gamma \\ \forall \omega, & \left\| \frac{W_1(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma, \\ \forall \omega, & \left\| \frac{W_2(j\omega)K(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma, \end{array}$$

The closed-loop system must be *stable*.

Stability:

The system is stable iff its poles are strictly negative. \Leftrightarrow The roots of the denominator of $\frac{1}{1+G(s)K(s)}$ are strictly negative

\implies Routh-Hurwitz stability criterion

Global Optimization

Mathematical Modelization

Routh-Hurwitz stability criterion

$$P(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

$v_{1,1} = a_n$	$v_{1,2} = a_{n-2}$	$v_{1,3} = a_{n-4}$	$v_{1,4} = a_{n-6}$
$v_{2,1} = a_{n-1}$	$v_{2,2} = a_{n-3}$	$v_{2,3} = a_{n-5}$	$v_{2,4} = a_{n-7}$
$v_{3,1} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,2} \\ v_{2,1} & v_{2,2} \end{vmatrix}$	$v_{3,2} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,3} \\ v_{2,1} & v_{2,3} \end{vmatrix}$	$v_{3,3} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,4} \\ v_{2,1} & v_{2,4} \end{vmatrix}$	
$v_{4,1} = \frac{-1}{v_{3,1}} \begin{array}{cc} v_{2,1} & v_{2,2} \\ v_{3,1} & v_{3,1} & v_{3,2} \end{array}$	$v_{4,2} = \frac{-1}{v_{3,1}} \begin{array}{cc} v_{2,1} & v_{2,3} \\ v_{3,1} & v_{3,1} & v_{3,3} \end{array}$		
$v_{5,1} = \frac{-1}{v_{4,1}} \begin{vmatrix} v_{3,1} & v_{3,2} \\ v_{4,1} & v_{4,2} \end{vmatrix}$			
	·	·	·

Global Optimization

Mathematical Modelization

Routh-Hurwitz stability criterion

$$P(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

$v_{1,1} = a_n$	$v_{1,2} = a_{n-2}$	$v_{1,3} = a_{n-4}$	$v_{1,4} = a_{n-6}$
$v_{2,1} = a_{n-1}$	$v_{2,2} = a_{n-3}$	$v_{2,3} = a_{n-5}$	$v_{2,4} = a_{n-7}$
$v_{3,1} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,2} \\ v_{2,1} & v_{2,2} \end{vmatrix}$	$v_{3,2} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,3} \\ v_{2,1} & v_{2,3} \end{vmatrix}$	$v_{3,3} = \frac{-1}{v_{2,1}} \begin{vmatrix} v_{1,1} & v_{1,4} \\ v_{2,1} & v_{2,4} \end{vmatrix}$	
$v_{4,1} = \frac{-1}{v_{3,1}} \begin{array}{c} v_{2,1} & v_{2,2} \\ v_{3,1} & v_{3,1} & v_{3,2} \end{array}$	$v_{4,2} = \frac{-1}{v_{3,1}} \begin{array}{cc} v_{2,1} & v_{2,3} \\ v_{3,1} & v_{3,1} & v_{3,3} \end{array}$		
$v_{5,1} = \frac{-1}{v_{4,1}} \begin{vmatrix} v_{3,1} & v_{3,2} \\ v_{4,1} & v_{4,2} \end{vmatrix}$			
	·	·	·

If all the value of the **first column** are positive, all roots of P are negative.

Global Optimization

Application to H_∞ control synthesis under structural constraints — Conclusion

Mathematical Modelization

Definition of the feasible set

$$\begin{split} \mathbb{K}^{1}_{\omega} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{1}(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K}^{2}_{\omega} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{2}(i\omega)K(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \end{split}$$

Global Optimization

Mathematical Modelization

Definition of the feasible set

$$\begin{split} \mathbb{K}^{1}_{\omega} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{1}(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K}^{2}_{\omega} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{2}(i\omega)K(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K}^{4} &= \bigcap_{\omega \in [10^{-2}, 10^{2}]} \mathbb{K}^{1}_{\omega} \cap \mathbb{K}^{2}_{\omega}. \end{split}$$

Global Optimization

Mathematical Modelization

Definition of the feasible set

$$\begin{split} \mathbb{K}^{1}_{\omega} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{1}(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K}^{2}_{\omega} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{2}(i\omega)K(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K}^{4} &= \bigcap_{\omega \in [10^{-2}, 10^{2}]} \mathbb{K}^{1}_{\omega} \cap \mathbb{K}^{2}_{\omega}. \end{split}$$

The Routh's condition / stability of the closed-loop system:

$$\mathbb{K}^{Routh} = \{(k,\gamma) : \begin{cases} a_n(k,\gamma) > 0, \\ a_{n-1}(k,\gamma) > 0, \\ v_{2,1}(k,\gamma) > 0, \\ \dots \end{cases} \}.$$

Global Optimization

Mathematical Modelization

Definition of the feasible set

$$\begin{split} \mathbb{K}^{1}_{\omega} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{1}(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K}^{2}_{\omega} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{2}(i\omega)K(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K}^{4} &= \bigcap_{\omega \in [10^{-2}, 10^{2}]} \mathbb{K}^{1}_{\omega} \cap \mathbb{K}^{2}_{\omega}. \end{split}$$

The Routh's condition / stability of the closed-loop system:

$$\mathbb{K}^{Routh} = \{(k,\gamma) : \begin{cases} a_n(k,\gamma) > 0, \\ a_{n-1}(k,\gamma) > 0, \\ v_{2,1}(k,\gamma) > 0, \\ \dots \end{cases} \}.$$

The feasible set of our problem is $\mathbb{K} = \mathbb{K}^4 \cap \mathbb{K}^{Routh}$.

Jordan Ninin

Application to H_{∞} control synthesis under structural constraints Conclus

Contractor Modelization

Contractor Modelization: Properties

Let A a contractor for the equation f(x) = 0, and B a contractor for the equation g(x) = 0, then:

Intersection, Composition

 $\mathcal{A} \cap \mathcal{B}$ and $\mathcal{A} \circ \mathcal{B}$ are two contractors for the region:

$$\{x \in \mathbb{R}^n : f(x) = 0 \text{ AND } g(x) = 0\}$$

Union

 $\mathcal{A} \cup \mathcal{B}$ is a contractor for the region:

$$\{x\in\mathbb{R}^n\ :\ f(x)=0\ OR\ g(x)=0\}$$

Contractor Modelization

Contractor with Quantifiers

Let \mathcal{C} be a contractor for a set $\mathbb{Z} = \mathbb{X} \times \mathbb{Y}$, $\pi_{\mathbb{X}}$ the projection of \mathbb{Z} over \mathbb{X} .

Contractor ForAll / Exists

$$\left\{ \begin{array}{l} \mathcal{C}^{\cap \mathbb{Y}}(\mathbf{x}) = \bigcap_{y \in \mathbb{Y}} \pi_{\mathbb{X}} \left(\mathcal{C}(\mathbf{x} \times \{y\}) \right), \\ \\ \mathcal{C}^{\cup \mathbb{Y}}(\mathbf{x}) = \bigcup_{y \in \mathbb{Y}} \pi_{\mathbb{X}} \left(\mathcal{C}(\mathbf{x} \times \{y\}) \right). \end{array} \right.$$

Property

$$\mathcal{C}^{\cap \mathbb{Y}}$$
 is a contractor for $\{x : \forall y \in \mathbb{Y}, (x, y) \in \mathbb{Z}\}\$
 $\mathcal{C}^{\cup \mathbb{Y}}$ is a contractor for $\{x : \exists y \in \mathbb{Y}, (x, y) \in \mathbb{Z}\}.$

Contractor Modelization

Contractor with Quantifiers

Let \mathcal{C} be a contractor for a set $\mathbb{Z} = \mathbb{X} \times \mathbb{Y}$, $\pi_{\mathbb{X}}$ the projection of \mathbb{Z} over \mathbb{X} .

Contractor ForAll / Exists

$$\left\{ \begin{array}{l} \mathcal{C}^{\cap \mathbb{Y}}(\mathbf{x}) = \bigcap_{y \in \mathbb{Y}} \pi_{\mathbb{X}} \left(\mathcal{C}(\mathbf{x} \times \{y\}) \right), \\ \\ \mathcal{C}^{\cup \mathbb{Y}}(\mathbf{x}) = \bigcup_{y \in \mathbb{Y}} \pi_{\mathbb{X}} \left(\mathcal{C}(\mathbf{x} \times \{y\}) \right). \end{array} \right.$$

Property

$$\mathcal{C}^{\cap \mathbb{Y}}$$
 is a contractor for $\{x : \forall y \in \mathbb{Y}, (x, y) \in \mathbb{Z}\}$
 $\mathcal{C}^{\cup \mathbb{Y}}$ is a contractor for $\{x : \exists y \in \mathbb{Y}, (x, y) \in \mathbb{Z}\}$.

Contractor Modelization

Contractor with Quantifiers

Let \mathcal{C} be a contractor for a set $\mathbb{Z} = \mathbb{X} \times \mathbb{Y}$, $\pi_{\mathbb{X}}$ the projection of \mathbb{Z} over \mathbb{X} .

Contractor ForAll / Exists

$$\left\{ \begin{array}{l} \mathcal{C}^{\cap \mathbb{Y}}(\mathbf{x}) = \bigcap_{y \in \mathbb{Y}} \pi_{\mathbb{X}} \left(\mathcal{C}(\mathbf{x} \times \{y\}) \right), \\ \\ \mathcal{C}^{\cup \mathbb{Y}}(\mathbf{x}) = \bigcup_{y \in \mathbb{Y}} \pi_{\mathbb{X}} \left(\mathcal{C}(\mathbf{x} \times \{y\}) \right). \end{array} \right.$$

Property

$$\mathcal{C}^{\cap \mathbb{Y}}$$
 is a contractor for $\{x : \forall y \in \mathbb{Y}, (x, y) \in \mathbb{Z}\}\$
 $\mathcal{C}^{\cup \mathbb{Y}}$ is a contractor for $\{x : \exists y \in \mathbb{Y}, (x, y) \in \mathbb{Z}\}.$

Application to H_{∞} control synthesis under structural constraints Conclusion

Contractor Modelization

Contractor CtcForAll: $\mathbb{X} = \{x : \forall y \in \mathbb{Y}, (x, y) \in \mathbb{Z}\}$

Contractor Modelization

Contractor CtcExist: $\mathbb{X} = \{x : \exists y \in \mathbb{Y}, (x, y) \in \mathbb{Z}\}$

Global Optimization Application to H_∞ control synthesis under structural constraints Conclusion 0000000000000000

Contractor Modelization

Construction of Contractors C_{out} of the feasible set \mathbb{K}

 \mathcal{C}_{out} will eliminate all the part of a box which are not in \mathbb{K} .

$$\begin{split} \mathbb{K}^{1}_{\omega} &= \left\{ (k, \gamma, \omega) \, : \, \left\| \frac{W_{1}(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K}^{2}_{\omega} &= \left\{ (k, \gamma, \omega) \, : \, \left\| \frac{W_{2}(i\omega)K(i\omega)}{1 + G(i\omega)K(i\omega)} \right\|_{\infty} \leq \gamma \right\}, \\ \mathbb{K} &= \left(\bigcap_{\omega \in [10^{-2}, 10^{2}]} \mathbb{K}^{1}_{\omega} \cap \mathbb{K}^{2}_{\omega} \right) \cap \mathbb{K}^{Routh}. \end{split}$$

Global Optimization Application to H_{∞} control synthesis under structural constraints Conclusion 0000000000000000

Contractor Modelization

Construction of Contractors C_{out} of the feasible set \mathbb{K}

 \mathcal{C}_{out} will eliminate all the part of a box which are not in \mathbb{K} .

$$\mathbb{K} = \left(igcap_{\omega\in [10^{-2},10^2]}\mathbb{K}^1_\omega\cap\mathbb{K}^2_\omega
ight)\cap\mathbb{K}^{\textit{Routh}}.$$

Contractor Modelization

Construction of Contractors \mathcal{C}_{out} of the feasible set \mathbb{K}

 C_{out} will eliminate all the part of a box which are not in \mathbb{K} .

$$\mathbb{K} = \left(\bigcap_{\omega \in [10^{-2}, 10^2]} \mathbb{K}^1_{\omega} \cap \mathbb{K}^2_{\omega}\right) \cap \mathbb{K}^{\textit{Routh}}.$$

1 Create the contractor C_1 , C_2 and C_{Routh} based on \mathbb{K}^1_{ω} , \mathbb{K}^2_{ω} and \mathbb{K}^{Routh} :

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

Contractor Modelization

Construction of Contractors C_{out} of the feasible set \mathbb{K}

 C_{out} will eliminate all the part of a box which are not in \mathbb{K} .

$$\mathbb{K} = \left(\bigcap_{\omega \in [10^{-2}, 10^2]} \mathbb{K}^1_{\omega} \cap \mathbb{K}^2_{\omega}\right) \cap \mathbb{K}^{Routh}.$$

1 Create the contractor C_1 , C_2 and C_{Routh} based on \mathbb{K}^1_{ω} , \mathbb{K}^2_{ω} and \mathbb{K}^{Routh} :

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

2 Inter: $C_3(\mathbf{k}, \gamma, \omega) = C_1(\mathbf{k}, \gamma, \omega) \cap C_2(\mathbf{k}, \gamma, \omega).$

Contractor Modelization

Construction of Contractors C_{out} of the feasible set \mathbb{K}

 C_{out} will eliminate all the part of a box which are not in \mathbb{K} .

$$\mathbb{K} = \left(\bigcap_{\omega \in [10^{-2}, 10^2]} \mathbb{K}^1_{\omega} \cap \mathbb{K}^2_{\omega}\right) \cap \mathbb{K}^{Routh}.$$

1 Create the contractor C_1 , C_2 and C_{Routh} based on \mathbb{K}^1_{ω} , \mathbb{K}^2_{ω} and \mathbb{K}^{Routh} :

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

2 Inter: $C_3(\mathbf{k}, \gamma, \omega) = C_1(\mathbf{k}, \gamma, \omega) \cap C_2(\mathbf{k}, \gamma, \omega).$

3 CtcForAll:
$$\mathcal{C}^{\cap\omega}(\mathbf{k},\gamma) = \bigcap_{\omega \in [10^{-2}, 10^2]} \mathcal{C}_3(\mathbf{k},\gamma,\omega).$$

Contractor Modelization

Construction of Contractors C_{out} of the feasible set \mathbb{K}

 C_{out} will eliminate all the part of a box which are not in \mathbb{K} .

$$\mathbb{K} = \left(\bigcap_{\omega \in [10^{-2}, 10^2]} \mathbb{K}^1_{\omega} \cap \mathbb{K}^2_{\omega}\right) \cap \mathbb{K}^{\textit{Routh}}.$$

1 Create the contractor C_1 , C_2 and C_{Routh} based on \mathbb{K}^1_{ω} , \mathbb{K}^2_{ω} and \mathbb{K}^{Routh} :

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

- 2 Inter: $C_3(\mathbf{k}, \gamma, \omega) = C_1(\mathbf{k}, \gamma, \omega) \cap C_2(\mathbf{k}, \gamma, \omega).$
- **3** CtcForAll: $\mathcal{C}^{\cap\omega}(\mathbf{k},\gamma) = \bigcap_{\omega \in [10^{-2},10^2]} \mathcal{C}_3(\mathbf{k},\gamma,\omega).$

4 Inter: $C_{out} = C^{\cap \omega} \cap C_{Routh}$.

Global Optimization Application to H_{∞} control synthesis under structural constraints Conclusion

Contractor Modelization

Construction of Contractors C_{in} of the unfeasible set \mathbb{K}

 \mathcal{C}_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\begin{split} \overline{\mathbb{K}_{\omega}^{1}} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{1}(i\omega)}{1 + G(i\omega)K(i\omega)} \right\| > \gamma \right\}, \\ \overline{\mathbb{K}_{\omega}^{2}} &= \left\{ (k, \gamma, \omega) : \left\| \frac{W_{2}(i\omega)K(i\omega)}{1 + G(i\omega)K(i\omega)} \right\| > \gamma \right\}, \\ \overline{\mathbb{K}} &= \left(\bigcup_{\omega \in [10^{-2}, 10^{2}]} \overline{\mathbb{K}_{\omega}^{1}} \cup \overline{\mathbb{K}_{\omega}^{2}} \right) \cup \overline{\mathbb{K}^{Routh}}. \end{split}$$

Global Optimization Application to H_{∞} control synthesis under structural constraints Conclusion 000000 \bullet 000000

Contractor Modelization

Construction of Contractors C_{in} of the unfeasible set \mathbb{K}

 C_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^2]} \overline{\mathbb{K}^1_\omega} \cup \overline{\mathbb{K}^2_\omega}\right) \cup \overline{\mathbb{K}^{\textit{Routh}}}.$$

Contractor Modelization

Construction of Contractors C_{in} of the unfeasible set \mathbb{K}

 C_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^2]} \overline{\mathbb{K}^1_{\omega}} \cup \overline{\mathbb{K}^2_{\omega}}\right) \cup \overline{\mathbb{K}^{Routh}}.$$

1 Create the contractor $C_{\overline{1}}$, $C_{\overline{2}}$ and $C_{\overline{Routh}}$ based on $\overline{\mathbb{K}_{\omega}^{1}}$, $\overline{\mathbb{K}_{\omega}^{2}}$ and $\overline{\mathbb{K}^{Routh}_{\cdots}}$:

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, \ldots

Contractor Modelization

Construction of Contractors C_{in} of the unfeasible set \mathbb{K}

 C_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^2]} \overline{\mathbb{K}^1_{\omega}} \cup \overline{\mathbb{K}^2_{\omega}}\right) \cup \overline{\mathbb{K}^{Routh}}.$$

1 Create the contractor $C_{\overline{1}}$, $C_{\overline{2}}$ and $C_{\overline{Routh}}$ based on $\overline{\mathbb{K}_{\omega}^{1}}$, $\overline{\mathbb{K}_{\omega}^{2}}$ and $\overline{\mathbb{K}^{Routh}_{\cdots}}$:

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

2 Union: $C_{\overline{3}}(\mathbf{k},\gamma,\omega) = C_{\overline{1}}(\mathbf{k},\gamma,\omega) \cup C_{\overline{2}}(\mathbf{k},\gamma,\omega).$

Contractor Modelization

Construction of Contractors C_{in} of the unfeasible set \mathbb{K}

 C_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^2]} \overline{\mathbb{K}^1_{\omega}} \cup \overline{\mathbb{K}^2_{\omega}}\right) \cup \overline{\mathbb{K}^{Routh}}.$$

1 Create the contractor $C_{\overline{1}}$, $C_{\overline{2}}$ and $C_{\overline{Routh}}$ based on $\overline{\mathbb{K}_{\omega}^{1}}$, $\overline{\mathbb{K}_{\omega}^{2}}$ and $\overline{\mathbb{K}^{Routh}_{\cdots}}$:

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

2 Union:
$$C_{\overline{3}}(\mathbf{k}, \gamma, \omega) = C_{\overline{1}}(\mathbf{k}, \gamma, \omega) \cup C_{\overline{2}}(\mathbf{k}, \gamma, \omega)$$
.

3 CtcExist:
$$\mathcal{C}^{\cup\omega}(\mathbf{k},\gamma) = \bigcup_{\omega \in [10^{-2}, 10^2]} \mathcal{C}_{\overline{3}}(\mathbf{k},\gamma,\omega).$$

imization Application to H_{∞} control synthesis under structural constraints Conclusion

Contractor Modelization

Construction of Contractors C_{in} of the unfeasible set $\overline{\mathbb{K}}$

 C_{in} will eliminate all the part of a box which are not in $\overline{\mathbb{K}}$.

$$\overline{\mathbb{K}} = \left(\bigcup_{\omega \in [10^{-2}, 10^2]} \overline{\mathbb{K}^1_{\omega}} \cup \overline{\mathbb{K}^2_{\omega}}\right) \cup \overline{\mathbb{K}^{Routh}}.$$

Contractor based on inequality system: Forward-Backward algorithm, HC4-revise, PolytopeHull, ...

2 Union: $C_{\overline{3}}(\mathbf{k}, \gamma, \omega) = C_{\overline{1}}(\mathbf{k}, \gamma, \omega) \cup C_{\overline{2}}(\mathbf{k}, \gamma, \omega)$.

3 CtcExist:
$$\mathcal{C}^{\cup\omega}(\mathbf{k},\gamma) = \bigcup_{\omega \in [10^{-2}, 10^2]} \mathcal{C}_{\overline{3}}(\mathbf{k},\gamma,\omega).$$

4 Union: $C_{in} = C^{\cup \omega} \cup C_{\overline{Routh}}$.

Contractor Modelization

First Application with second order dynamic system

The transfer function of the dynamic system:

$$G(s) = rac{1}{s^2 + 1.4s + 1}, \quad K(s) = k_p + rac{k_i}{s} + rac{k_d s}{1 + s}.$$
 $W_1(s) = rac{s + 100}{100s + 1}, \qquad W_2(s) = rac{10s + 1}{s + 10}.$

Application to H_{∞} control synthesis under structural constraints Conclusion

Contractor Modelization

Overview of the equation

$$\forall \omega \in [10^{-2}, 10^2], \left\| \frac{W_1(j\omega)}{1 + G(j\omega) \mathcal{K}(j\omega)} \right\|_{\infty} \leq \gamma.$$
$$\iff$$

$$\forall \omega \in [10^{-2}, 10^2], \frac{w^2 (w^2 + 1.0) (w^2 + 10000.0) (25.0 w^4 - 1.0 w^2 + 25.0)}{(10000.0 w^2 + 1.0) f_1(\mathbf{k}, \gamma, \omega)} \leq \gamma.$$

Application to H_{∞} control synthesis under structural constraints Conclusion

Contractor Modelization

Overview of the equation

$$\forall \omega \in [10^{-2}, 10^2], \left\| \frac{W_1(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma.$$
$$\iff$$

$$\forall \omega \in [10^{-2}, 10^2], \frac{w^2 (w^2 + 1.0) (w^2 + 10000.0) (25.0 w^4 - 1.0 w^2 + 25.0)}{(10000.0 w^2 + 1.0) f_1(\mathbf{k}, \gamma, \omega)} \leq \gamma.$$

$$\begin{split} f_1(\mathbf{k},\gamma,\omega) &= 25.0 \mathrm{kd}^2 w^4 + 25.0 \mathrm{kp}^2 w^2 + 25.0 \mathrm{kp}^2 w^4 - \\ 1.0 \mathrm{ki} & \left(50.0 \mathrm{kd} w^2 + 70.0 w^2 + 70.0 w^4 \right) + \mathrm{ki}^2 & \left(25.0 w^2 + 25.0 \right) + \\ 120.0 \mathrm{kd} w^4 - 50.0 \mathrm{kd} w^6 + 50.0 \mathrm{kp} w^2 - 50.0 \mathrm{kp} w^6 + 25.0 w^2 + \\ & 24.0 w^4 + 24.0 w^6 + 25.0 w^8 + 50.0 \mathrm{kd} \mathrm{kp} w^4 \end{split}$$

Application to H_{∞} control synthesis under structural constraints Conclusion

Contractor Modelization

Overview of the equation

$$\forall \omega \in [10^{-2}, 10^2], \left\| \frac{W_1(j\omega)}{1 + G(j\omega)K(j\omega)} \right\|_{\infty} \leq \gamma.$$
$$\iff$$

$$\forall \omega \in [10^{-2}, 10^2], \frac{w^2 (w^2 + 1.0) (w^2 + 10000.0) (25.0 w^4 - 1.0 w^2 + 25.0)}{(10000.0 w^2 + 1.0) f_1(\mathbf{k}, \gamma, \omega)} \leq \gamma.$$

$$\begin{split} f_1(\mathbf{k},\gamma,\omega) &= 25.0 \mathrm{kd}^2 w^4 + 25.0 \mathrm{kp}^2 w^2 + 25.0 \mathrm{kp}^2 w^4 - \\ 1.0 \mathrm{ki} & (50.0 \mathrm{kd} w^2 + 70.0 w^2 + 70.0 w^4) + \mathrm{ki}^2 & (25.0 w^2 + 25.0) + \\ 120.0 \mathrm{kd} w^4 - 50.0 \mathrm{kd} w^6 + 50.0 \mathrm{kp} w^2 - 50.0 \mathrm{kp} w^6 + 25.0 w^2 + \\ & 24.0 w^4 + 24.0 w^6 + 25.0 w^8 + 50.0 \mathrm{kd} \mathrm{kp} w^4 \\ & \forall u \in [-2,2], \omega = 10^u. \end{split}$$

Application to H_{∞} control synthesis under structural constraints Conc

Contractor Modelization

Results with hinfsyn of Matlab

 $\gamma = 1.5887$

Contractor Modelization

Results with hinfstruct of Matlab

 $\gamma = 2.1414$

Contractor Modelization

Results with Global Optimization of IBEX

Contractor Modelization

Results with Global Optimization of IBEX

Jordan Ninin

Global Optimization

Conclusion

Contractor Programming:

- Generate the Modelization and the adapted Solver in the same time,
- Consider heterogeneous constraints without changing the solver,
- Give all the tools to the expert of the application.

http://www.ibex-lib.org

- Interval Arithmetic Interface: Filib, Gaol, Profil/BIAS.
- Affine Arithmetic.
- Linear Solver Interface: Soplex, CPLEX, CLP.
- Symbolic and Automatic Differentiation.
- AMPL Interface.
- Reliable computation of Ordinary Differential Equation (DynIBEX)
- CSP solver, Global Optimization solver.
- Available on Linux, MacOSX and Windows.

Fork it on GitHub

http://github.com/ibex-team/ibex-lib