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The aim of this presentation is to demonstrate

one interesting practical problem of estimation

of experimental process parameters under uncertainty

conditions when components of the parameter vector

can be only estimated on the basis of the Interval

Analysis approach and available a priori data
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Experimental process and its model

Description of a reagent activity vs the temperature (similarly

to [10,12]) has the form

P (T, a, b, c) = T2 a b/c, a > 0, b > 0, c > 0, (1)

where T is the temperature (the argument), C◦;

P (·) is the reagent activity, dimensionless value;

a, b, and c are parameters (to be estimated)

with dimensions: mole, 1/mole, and (C◦)2.
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Measured information and its uncertainty

Results of the experiment are presented as the following collection (a
sample with lenght N) of the reagent activity P measurements:

{Tn, Pn}, n = 2, N, (2)

where values Tn are supposed to be know exactly, but the activity values
Pn are measured with error (noise)

Pn = P ∗
n + en, |en| ≤ emax, n = 2, N, and for T1 = 0, P1 = 0, (3)

where Pn is a noised measurement; P ∗
n is unknown true value under

measuring; en is the error value in the nth measurement; emax is the
bound onto the maximal (by modulus) value of the error. By physical
reasoning, the conditional exact initial measurement at T1 = 0 is given
zero.

5



Conditions for estimation and a priori information

No probabilistic information on errors is known and the sample
is dramatically short: N ≈ 5 ∼ 7 measurements only.

In (1), parameters a, b and c are merged (“stuck”) that hampers estimation
of their own admissible intervals without some additional information.

From theoretical estimations and previous experience, the following
rough a priori constraints on possible values of the coefficients
are given:

aap = [aap, aap], bap = [bap, bap
], cap = [cap, cap],

0 < aap < aap, 0 < bap < bap
, 0 < cap < cap.

(4)

The LSQM-curve and pointwise estimation of parameters a, b, c and
their practically meaningless “cloud-built” intervals are available
by only formal application of standard statistical procedures [15–17].
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Interval approach and its essence

Ideas and methods of the Interval Analysis Theory and Applications
arose from the fundamental, pioneer work by L.V. Kantorovich [1].
Nowadays, very effective developments of the theory and
computational methods were created by many researchers, e.g. [2–4]
and in Russia [5–8].

Special interval algorithms have been elaborated for estimating
parameters of experimental chemical processes [9–14].

Remind that essence of this branch of numerical methods theory and
application consists in estimation (or identification) of parameters
under bounded errors (noises or perturbations) in the input
information to be processed, and under complete absence of
probabilistic characteristics of errors.
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The main definitions

Uncertainty set (interval) of each measurement (USM). It is the interval
of values of measured process consistent with the measurement and the
error bound

Hn = [hn, hn] : hn = Pn − emax, hn = Pn + emax, n = 2, N, (5)

and for n = 1, H1 = H(0) = [0], trivially.

Admissible value of the parameter vector and corresponding admissible
curve

(a, b, c) : P (Tn, a, b, c) ∈ Hn, for all n = 1, N. (6)

Informational Set (InfSet) is a totality of admissible values of the parameters
vector satisfying the system of interval inequalities (6)

I(a, b, c) =
{
(a, b, c) : P (Tn, a, b, c) ∈ Hn, for all n = 1, N

}
. (7)
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Measurements and their uncertainty sets (USM)
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If the actual level of errors in the sample is lower the initially given a priori bound emax,
the LSQM-curve and values of its parameters could be admissible.
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Problem formulation

Since of very short length of the measurements
sample,
absence of probabilistic characteristics of the errors,
and measurements uncertainty,
it is impossible to use (with any good reasoning)
the standard statistical methods [15–17]).

It is necessary:
on the basis of the Interval Analysis methods to built
the Informational set I(a, b, c) of admissible values
(or the Set-membership) of coefficients a, b, and c
consistent with the described data.
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Applied procedures
Direct set-estimation approach

There are several approaches to solve system (6) of the interval inequalities
– classic linear programming methods [1, and many others],
– parallelotopes Fiedler M., et al [2], Hansen [3], Jaulin, et al [4], Shary
[5],
– by the “stripes” method Shary&Sharaya [6], Sharaya [7], Zhilin [8].

More convenient and faster DIRECT method has been elaborated (see,
Kumkov and with co-authors [9–14]) that gives exact estimation of the
Informational set (7) on part of parameters for each node of the grid
on other parameters. In the case under consideration, we represent the
set I(a, b, c) in the form of a collection of its cross-sections

{
Ia(b, c)

}
for

nodes of the grid on the parameter a on its minimal outer interval a∗ of
admissible values.
It is performed in contrast, for example, to outer approximation
of informational sets in the parallelotope approaches.
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Three successive auxiliary problems

The following auxiliary problems are solved.

1) Introducing the auxiliary merged parameter g = ab/c with g > 0, its
corresponding informational interval g = [g, g] is calculated [10,12].

2) Having the interval equation ad = g, where d = b/c, solve it w.r.t. the
auxiliary parameter d as follows: d = g/aap. As a result in the plane a×d,
we obtain the informational set I(a, d) with the curve (hyperbolic) lower
Frd(a) and upper Frd(a) boundaries as a functions of the parameter a

values from its a priori interval aap.

3) For each value a ∈ aap we have the interval d(a). So, it becomes
possible to construct the informational set Ia(b, c) of admissible values for
parameters b, c for each admissible value of the parameter a.
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Solution of the auxiliary Problem 1. Informational
set of the “merged” parameter g = ab/c
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Analysis of consistency of a priori data
with the measured ones

Note that it is worthy to calculate the a priori

interval gap of the parameter g and compare

it with the obtained interval g for analysis of

consistency of the a priori data (4) on parameters

a, b, c with the given sample of measurements (2),(3).
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Solution of the auxiliary Problem 1. Tube
of admissible dependencies
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Estimating from below the maximal value
of the actual error in the sample

The limit
curve -- “tube”
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Solution of the auxiliary Problem 2. Informational
set I(a, d) of parameters a, d for d = b/c
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Analysis of consistency of a priori data
with the measured ones

In figure the a priori interval dap of the auxiliary parameter d

is shown (the thick dash-dotted vertical segment) calculated

by the a priori intervals bap and cap. The thick vertical line in

dashes marks the outer interval in d of I(a, d) for the a priori

interval aap. Comparison of these two intervals allows one to

check out consistency of the a priori data (4) on parameters

a, b, c with the given sample of measurements (2),(3).
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Solution of Problem 2. Informational set I(a, d)
of parameters a, d for more wide interval aap
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Solution of Problem 3. Informational set Ia(b, c)
of parameters b, c for fixed value a = 1.89, mole
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Constructing the collection {Ia(b, c)} of cross-sections
of the informational set I(a, b, c)

It is seen that the set Ia(b, c) is built by intersection of the

rectangle bap×cap with the cone between the lower c(b,1/d(a)

and upper c(b,1/d(a) rays for a ∈ aap (or from the enhanced

one a*) and b ∈ bap. Here, the set Ia(b, c) (shadowed five-apex

polygon) is shown for value a = 1.89, mole and corresponding

interval d(1.89) by solution of Problem 2.
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Informational set I(a, b, c) as a collection
of its cross-sections {Ia(b, c)}
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Conclusions

In the considered ill-posed estimation problem with the “stuck”

parameters and under absence of probabilistic characteristics

of the measuring errors, the elaborated interval approach

allows one: to analyze consistency of the given sample of

measurements itself; to analyze consistency of the given sample

of measurements and the given a priori data, and to construct

the informational set of admissible values of parameters.

Algorithms elaborated are simple in numeric implementation.

In special cases, they can give exact estimations of the infor-

mational set and are faster than usual interval approaches on

the basis of parallelotopes.
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