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Background
● Interval methods provide us several powerful 

tools for solving nonlinear systems, e.g.:
➢ various kinds of interval Newton operator,
➢ various consistency operators,
➢ other constraint propagation/satisfaction tools,
➢ ...

● Question: What is crucial for the efficiency (or 
its lack) of an interval method for solving a 
specific problem?



  

Background
● Interval methods provide us several powerful 

tools for solving nonlinear systems, e.g.:
➢ various kinds of interval Newton operator,
➢ various consistency operators,
➢ other constraint propagation/satisfaction tools,
➢ ...

● Question: What is crucial for the efficiency (or 
its lack) of an interval method for solving a 
specific problem?
➢ Answer: developing a proper heuristic for choosing, 

parameterizing and arranging adequate tools to 
process specific data.



  

Overall b&p algorithm
Lpos = {}; Lverif = {};
L = {x0};
(optionally) preprocess the list L; // prior to the actual b&p procedure 
while (there are boxes to consider) do

pop (x);
process (x);
if (x was verified to contain a solution) then

push (Lverif, x);
else if (x is verified not to contain solutions) then

discard x;
end if
if (x was discarded or stored) then

pop (x);
else if (diam (x) < ε) then

push (Lpos, x);
else

bisect (x, x1, x2);   push (x2);   x = x1;
end if

end while



  

● Multithreaded implementation – different boxes 
can be processed by different threads.
➢ Synchronization & load balancing.
➢ Some popular tools are not as adequate, e.g., LP-

preconditioners, LP-narrowing, hull consistency(?).
➢ Focus on MT-safe (or easy to parallelize) tools.
➢ Tuning for various architectures (in particular, MIC).

● Efficiency – as for well-determined, as for 
underdetermined problems.
➢ Proper tools and heuristics development.

Features and focus
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● Initial exclusion phase – prior to the actual b&p:
➢ Sobol sequence as a basis.
➢ solving the tolerance problem.
➢ computing the completion of a set of boxes.

● Interval Newton operator:
➢ switching between the componentwise version and GS.

● 2nd order approximation and quadratic equation 
solving.

● Box consistency enforcing.
● Bound consistency enforcing.
● Advanced heuristics to choose and parameterize 

these tools.

Used tools



  

● Initial exclusion phase – motivation:
➢ Interval Newton operators are powerful, but relatively 

expensive.
➢ Large boxes, encountered in the early stages of the b&p 

algorithm can rarely be reduced by the Newton operator.
➢ We should apply these operators only for boxes close to 

the solution set.
➢ Large regions of the domain can be discarded using 

function values, only.

Initial exclusion phase
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● Remove areas not containing solutions – not using 
the Newton operator or other higher order info:
➢ Prior to starting the actual branch-and-bound type method, 

we generate a number (e.g., n2) of points, using the Sobol 
sequence.

➢ Generate solution-free boxes around them, using the 
procedure of Сергей П. Шарый for the linearized equation 
and ε-inflation; if                   , the point is ignored.

➢ Exclude the boxes from the domain and perform the b&b 
type algorithm on their completion.

● Comments:
➢ The procedure is cheap – no derivatives.
➢ Sobol sequences can be generated efficiently and simply 

(there are Open Source libraries).

f ( x)∈[−ε ,ε ]

Initial exclusion phase



  

● An issue – proper implementation of the 
procedure computing the completion.

● There is the procedure of R.B. Kearfott for a 
single box; it generates at most 2 n boxes.

● It can be applied several times subsequently, 
but...

Initial exclusion phase



  

● An issue – proper implementation of the 
procedure computing the completion.

● There is the procedure of R.B. Kearfott for a 
single box; it generates at most 2 n boxes.

● It can be applied several times subsequently, 
but:
➢ No parallelism.
➢ The result would depend on the order of boxes 

exclusion.
➢ A great deal of boxes can get generated.
➢ Often, boxes have peculiar shapes (long and flat) 

and their shapes are unrelated to function values.
➢ Hence, actually, sometimes expanding the 

exclusion boxes decreases the performance.

Initial exclusion phase



  

● Boxes might be sorted with respect to decreasing 
Lebesgue measure, but it solves the problem rarely.

● The satisfying solution:
➢ We use task parallelism. Each task is to cut from a specific 

box a list of excluded boxes.
➢ From this list we choose the box with the largest (wrt the 

Lebesgue measure) intersection with the box from which 
we do the exclusion.

➢ Boxes, created in the exclusion process, become basis for 
new tasks (obviously, their lists of excluded boxes are 
shorter by one than for the parent task).

➢ Far fewer boxes are created and the parallelism is natural.
➢ All functions         are used for exclusion.f i(⋅)

Initial exclusion phase



  

➢ For each function, after the ε-inflation, variables, not 
occurring in its formula, are set to their whole domain.

➢ We exclude the box for         , for which we obtained the 
largest Lebesgue measure.

➢ There is a threshold value not to exclude to many boxes 
(1024 currently; it is a magical constant, obviously). 

● Intel TBB allows an elegant implementation:
➢ We use the concept of tbb::parallel_do.
➢ Boxes, created in the exclusion process, become basis for 

new tasks – using tbb::parallel_do_feeder.
➢ Lists of boxes are represented as std::vector 

(tbb::concurrent_vector does not have the method 
pop_back).

➢ Counter of excluded boxes it represented as atomic integers.

f i(⋅)

Initial exclusion phase



  

● A box x is box consistent iff all its 
facets are pseudo solutions.

● Enforcing box consistency – the 
bc3revise procedure:
➢ For each variable i, compute leftmost and 

rightmost pseudo-solutions, using the 
unidimensional interval Newton operator.

➢ Update bounds on x
i
.

➢ Repeat the above steps while at least one 
of the variables gets modified.

Box consistency



  

● A box x is box consistent iff all its 
facets are pseudo solutions.

● Enforcing box consistency – the 
bc3revise procedure:
➢ For each variable i, compute leftmost and 

rightmost pseudo-solutions, using the 
unidimensional interval Newton operator.

➢ Update bounds on x
i
.

➢ Repeat the above steps while at least one 
of the variables gets modified.

● Parallelization possibilities:
➢ Concurrent computing of different pseudo-

solutions and updating different variables.

Box consistency



  

● A box x is bound consistent iff all its facets 
contain a non-empty box consistent subbox.

● Enforcing bound consistency:
➢ Consider slices of each box wrt. all variables; 

there are 2 n such slices for each box:

➢ Apply the bc3revise procedure for each of them.
➢ If the proper bound of the i-th component has been 

reduced, update the proper bound of x.

Bound consistency

(x1,… , x i−1 , [ x i , c1] , x i+1 ,… , xn) , ( x1,… , x i−1 ,[c2, x i ] , x i+1 ,… , xn) .



  

● A box x is bound consistent iff all its facets 
contain a non-empty box consistent subbox.

● Enforcing bound consistency:
➢ Consider slices of each box wrt. all variables; 

there are 2 n such slices for each box:

➢ Apply the bc3revise procedure for each of them.
➢ If the proper bound of the i-th component has been 

reduced, update the proper bound of x.
● Parallelization possibilities:

➢ Concurrent processing of both slices for a single 
variable.

➢ Concurrent updating of different variables – 
synchronization needed!

Bound consistency

(x1,… , x i−1 , [ x i , c1] , x i+1 ,… , xn) , ( x1,… , x i−1 ,[c2, x i ] , x i+1 ,… , xn) .



  

● Some authors claim multisection outperforms 
bisection:
➢ It is more netural in some cases.
➢ It is more adequate for parallelization – more boxes 

generated, hence more parallelism.
● According to my experiences:

➢ It is rarely better than bisection.
➢ The influence on parallelism is negligible.
➢ Using the inital exclusion phase (that generates several 

boxes) reduces this impact even more.
➢ I was going to come up with a heuristic on when to use 

trisection, but... up to now my heuristic is: use bisection 
always. ;-)

➢ But... (?)

Bisection or multisection?



  

● Intel Core i7-3632QM, 2.2GHz; 4 cores wth HT.
● 64-bit Manjaro 0.8.8 GNU/Linux.
● Kernel 3.10.22-1-MANJARO.
● C++, compiler: GCC 4.8.2.
● Glibc 2.18.
● Libraries:

➢ C-XSC,
➢ Intel TBB,
➢ OpenBLAS.

Numerical experiments: 
environment I – laptop



  

● 2 × Intel Xeon E5-2695 v2, 2.4GHz; 12 cores with 
2 hyper-threads each (48 HT in total).

● Turbo frequency non-uniform! (2.9GHz – 3.2GHz).
● GNU/Linux.
● Kernel 3.10.0-123.el7.x86_64.
● C++, Intel compiler: ICC 15.0.2.
● Glibc 2.17.
● Libraries:

➢ C-XSC,
➢ Intel TBB,
➢ MKL.

Numerical experiments: 
environment II – host



  

● Intel Xeon Phi 7120P, 1.238GHz; 61 cores with 4 
hyper-threads each.

● Micro-OS GNU/Linux.
● Kernel 2.6.38.8+mpss3.4.1.
● C++, Intel compiler: ICC 15.0.2 (used by cross-

compilation from host, i.e., environment II).
● Glibc 2.14.90.
● Libraries:

➢ C-XSC,
➢ Intel TBB,
➢ MKL.

Numerical experiments: 
environment III – MIC



  

Example times

Problem Laptop
(8 threads)

Host
(32 threads)

MIC
(61 threads)

MIC
(122 threads)

Broyden 16 1.9s 0.6s 11.4s 12.2s

Brent 10 14.8s 7.0s 120.9s 124.9s

Academic 10.5s 4.6s 19.1s 16.6s

Puma 6 30.9s 11.5s 72.7s 62.6s

5R planar 102.6s 35.1s 241s 207.4s



  

● The solver parallelizes pretty well on 61 threads.
➢ The serial part is below 1.3% of the total time.

● Parallelizing box- and bound consistency enforcing 
operators is significant for a high number of threads.

● Results on the Xeon Phi coprocessor are still much 
worse than on CPU.

● It will be beneficial to utilize the hyper-threads on 
MIC, but this requires careful tuning, wrt. cache 
utilization and vectorization.

● It seems, for underdetermined problems, using HT 
(i.e., more than one thread per core) is worthwile.
➢ It is not because of post-processing of the list of boxes 

(longer than for well-determined problems)???

Results



  

● The solver is available at my ResearchGate profile:

https://www.researchgate.net/profile/Bartlomiej_Kubica?ev=hdr_xprf.

● The currently developed version is not available yet 
– will update it in a few weeks.

● The available version does not use bound 
consistency – this version has been described in the 
paper in Numerical Algorithms journal.

● Feel encouraged to use and test it!

● And stay tuned for updates!

Solver

https://www.researchgate.net/profile/Bartlomiej_Kubica?ev=hdr_xprf


  

● Explaining the mysterious behavior of the solver 
on the MIC architecture (i.e., Intel Xeon Phi).

● Tuning the solver for use with hyper-threads on 
this platform.

● Preparing the hybrid version, using both host and 
MIC (Intel compiler's directive:  
#pragma offload target(mic)).

● Exploring other tools (hull consistency?).

● ...

Future research
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