

Presentation of a multithreaded
interval solver for nonlinear

systems

Bartłomiej Jacek Kubica

Institute of Control and Computation Engineering
Warsaw University of Technology

SWIM 2015
Prague, Czech Republic

Background
● Interval methods provide us several powerful

tools for solving nonlinear systems, e.g.:
➢ various kinds of interval Newton operator,
➢ various consistency operators,
➢ other constraint propagation/satisfaction tools,
➢ ...

● Question: What is crucial for the efficiency (or
its lack) of an interval method for solving a
specific problem?

Background
● Interval methods provide us several powerful

tools for solving nonlinear systems, e.g.:
➢ various kinds of interval Newton operator,
➢ various consistency operators,
➢ other constraint propagation/satisfaction tools,
➢ ...

● Question: What is crucial for the efficiency (or
its lack) of an interval method for solving a
specific problem?
➢ Answer: developing a proper heuristic for choosing,

parameterizing and arranging adequate tools to
process specific data.

Overall b&p algorithm
Lpos = {}; Lverif = {};
L = {x0};
(optionally) preprocess the list L; // prior to the actual b&p procedure
while (there are boxes to consider) do

pop (x);
process (x);
if (x was verified to contain a solution) then

push (Lverif, x);
else if (x is verified not to contain solutions) then

discard x;
end if
if (x was discarded or stored) then

pop (x);
else if (diam (x) < ε) then

push (Lpos, x);
else

bisect (x, x1, x2); push (x2); x = x1;
end if

end while

● Multithreaded implementation – different boxes
can be processed by different threads.
➢ Synchronization & load balancing.
➢ Some popular tools are not as adequate, e.g., LP-

preconditioners, LP-narrowing, hull consistency(?).
➢ Focus on MT-safe (or easy to parallelize) tools.
➢ Tuning for various architectures (in particular, MIC).

● Efficiency – as for well-determined, as for
underdetermined problems.
➢ Proper tools and heuristics development.

Features and focus

Selected previous papers
● B. J. Kubica, Interval methods for solving underdetermined nonlinear

equations systems, SCAN 2008, Reliable Computing, Vol. 15, pp. 207 –
217 (2011).

● B. J. Kubica, Tuning the multithreaded interval method for solving
underdetermined systems of nonlinear equations, PPAM 2011, LNCS, Vol.
7204, pp. 467 – 476 (2012).

● B. J. Kubica, Excluding regions using Sobol sequences in an interval
branch-and-prune method for nonlinear systems, SCAN 2012, Reliable
Computing, Vol. 19(4), pp. 385 – 397 (2014).

● B. J. Kubica, Using quadratic approximations in an interval method of
solving underdetermined and well-determined nonlinear systems, PPAM
2013, LNCS 8385, pp. 623 – 633 (2014).

● B. J. Kubica, Presentation of a highly tuned multithreaded interval solver
for underdetermined and well-determined nonlinear systems, Numerical
Algorithms, published online,
http://dx.doi.org/10.1007/s11075-015-9980-y, 2015.

● B. J. Kubica, Parallelization of a bound-consistency enforcing procedure
and its application in solving nonlinear systems, submitted to PPAM 2015.

http://dx.doi.org/10.1007/s11075-015-9980-y

● Initial exclusion phase – prior to the actual b&p:
➢ Sobol sequence as a basis.
➢ solving the tolerance problem.
➢ computing the completion of a set of boxes.

● Interval Newton operator:
➢ switching between the componentwise version and GS.

● 2nd order approximation and quadratic equation
solving.

● Box consistency enforcing.
● Bound consistency enforcing.
● Advanced heuristics to choose and parameterize

these tools.

Used tools

● Initial exclusion phase – motivation:
➢ Interval Newton operators are powerful, but relatively

expensive.
➢ Large boxes, encountered in the early stages of the b&p

algorithm can rarely be reduced by the Newton operator.
➢ We should apply these operators only for boxes close to

the solution set.
➢ Large regions of the domain can be discarded using

function values, only.

Initial exclusion phase

● Initial exclusion phase – motivation:
➢ Interval Newton operators are powerful, but relatively

expensive.
➢ Large boxes, encountered in the early stages of the b&p

algorithm can rarely be reduced by the Newton operator.
➢ We should apply these operators only for boxes close to

the solution set.
➢ Large regions of the domain can be discarded using

function values, only.

Initial exclusion phase

● Remove areas not containing solutions – not using
the Newton operator or other higher order info:
➢ Prior to starting the actual branch-and-bound type method,

we generate a number (e.g., n2) of points, using the Sobol
sequence.

➢ Generate solution-free boxes around them, using the
procedure of Сергей П. Шарый for the linearized equation
and ε-inflation; if , the point is ignored.

➢ Exclude the boxes from the domain and perform the b&b
type algorithm on their completion.

● Comments:
➢ The procedure is cheap – no derivatives.
➢ Sobol sequences can be generated efficiently and simply

(there are Open Source libraries).

f (x)∈[−ε ,ε]

Initial exclusion phase

● An issue – proper implementation of the
procedure computing the completion.

● There is the procedure of R.B. Kearfott for a
single box; it generates at most 2 n boxes.

● It can be applied several times subsequently,
but...

Initial exclusion phase

● An issue – proper implementation of the
procedure computing the completion.

● There is the procedure of R.B. Kearfott for a
single box; it generates at most 2 n boxes.

● It can be applied several times subsequently,
but:
➢ No parallelism.
➢ The result would depend on the order of boxes

exclusion.
➢ A great deal of boxes can get generated.
➢ Often, boxes have peculiar shapes (long and flat)

and their shapes are unrelated to function values.
➢ Hence, actually, sometimes expanding the

exclusion boxes decreases the performance.

Initial exclusion phase

● Boxes might be sorted with respect to decreasing
Lebesgue measure, but it solves the problem rarely.

● The satisfying solution:
➢ We use task parallelism. Each task is to cut from a specific

box a list of excluded boxes.
➢ From this list we choose the box with the largest (wrt the

Lebesgue measure) intersection with the box from which
we do the exclusion.

➢ Boxes, created in the exclusion process, become basis for
new tasks (obviously, their lists of excluded boxes are
shorter by one than for the parent task).

➢ Far fewer boxes are created and the parallelism is natural.
➢ All functions are used for exclusion.f i(⋅)

Initial exclusion phase

➢ For each function, after the ε-inflation, variables, not
occurring in its formula, are set to their whole domain.

➢ We exclude the box for , for which we obtained the
largest Lebesgue measure.

➢ There is a threshold value not to exclude to many boxes
(1024 currently; it is a magical constant, obviously).

● Intel TBB allows an elegant implementation:
➢ We use the concept of tbb::parallel_do.
➢ Boxes, created in the exclusion process, become basis for

new tasks – using tbb::parallel_do_feeder.
➢ Lists of boxes are represented as std::vector

(tbb::concurrent_vector does not have the method
pop_back).

➢ Counter of excluded boxes it represented as atomic integers.

f i(⋅)

Initial exclusion phase

● A box x is box consistent iff all its
facets are pseudo solutions.

● Enforcing box consistency – the
bc3revise procedure:
➢ For each variable i, compute leftmost and

rightmost pseudo-solutions, using the
unidimensional interval Newton operator.

➢ Update bounds on x
i
.

➢ Repeat the above steps while at least one
of the variables gets modified.

Box consistency

● A box x is box consistent iff all its
facets are pseudo solutions.

● Enforcing box consistency – the
bc3revise procedure:
➢ For each variable i, compute leftmost and

rightmost pseudo-solutions, using the
unidimensional interval Newton operator.

➢ Update bounds on x
i
.

➢ Repeat the above steps while at least one
of the variables gets modified.

● Parallelization possibilities:
➢ Concurrent computing of different pseudo-

solutions and updating different variables.

Box consistency

● A box x is bound consistent iff all its facets
contain a non-empty box consistent subbox.

● Enforcing bound consistency:
➢ Consider slices of each box wrt. all variables;

there are 2 n such slices for each box:

➢ Apply the bc3revise procedure for each of them.
➢ If the proper bound of the i-th component has been

reduced, update the proper bound of x.

Bound consistency

(x1,… , x i−1 , [x i , c1] , x i+1 ,… , xn) , (x1,… , x i−1 ,[c2, x i] , x i+1 ,… , xn) .

● A box x is bound consistent iff all its facets
contain a non-empty box consistent subbox.

● Enforcing bound consistency:
➢ Consider slices of each box wrt. all variables;

there are 2 n such slices for each box:

➢ Apply the bc3revise procedure for each of them.
➢ If the proper bound of the i-th component has been

reduced, update the proper bound of x.
● Parallelization possibilities:

➢ Concurrent processing of both slices for a single
variable.

➢ Concurrent updating of different variables –
synchronization needed!

Bound consistency

(x1,… , x i−1 , [x i , c1] , x i+1 ,… , xn) , (x1,… , x i−1 ,[c2, x i] , x i+1 ,… , xn) .

● Some authors claim multisection outperforms
bisection:
➢ It is more netural in some cases.
➢ It is more adequate for parallelization – more boxes

generated, hence more parallelism.
● According to my experiences:

➢ It is rarely better than bisection.
➢ The influence on parallelism is negligible.
➢ Using the inital exclusion phase (that generates several

boxes) reduces this impact even more.
➢ I was going to come up with a heuristic on when to use

trisection, but... up to now my heuristic is: use bisection
always. ;-)

➢ But... (?)

Bisection or multisection?

● Intel Core i7-3632QM, 2.2GHz; 4 cores wth HT.
● 64-bit Manjaro 0.8.8 GNU/Linux.
● Kernel 3.10.22-1-MANJARO.
● C++, compiler: GCC 4.8.2.
● Glibc 2.18.
● Libraries:

➢ C-XSC,
➢ Intel TBB,
➢ OpenBLAS.

Numerical experiments:
environment I – laptop

● 2 × Intel Xeon E5-2695 v2, 2.4GHz; 12 cores with
2 hyper-threads each (48 HT in total).

● Turbo frequency non-uniform! (2.9GHz – 3.2GHz).
● GNU/Linux.
● Kernel 3.10.0-123.el7.x86_64.
● C++, Intel compiler: ICC 15.0.2.
● Glibc 2.17.
● Libraries:

➢ C-XSC,
➢ Intel TBB,
➢ MKL.

Numerical experiments:
environment II – host

● Intel Xeon Phi 7120P, 1.238GHz; 61 cores with 4
hyper-threads each.

● Micro-OS GNU/Linux.
● Kernel 2.6.38.8+mpss3.4.1.
● C++, Intel compiler: ICC 15.0.2 (used by cross-

compilation from host, i.e., environment II).
● Glibc 2.14.90.
● Libraries:

➢ C-XSC,
➢ Intel TBB,
➢ MKL.

Numerical experiments:
environment III – MIC

Example times

Problem Laptop
(8 threads)

Host
(32 threads)

MIC
(61 threads)

MIC
(122 threads)

Broyden 16 1.9s 0.6s 11.4s 12.2s

Brent 10 14.8s 7.0s 120.9s 124.9s

Academic 10.5s 4.6s 19.1s 16.6s

Puma 6 30.9s 11.5s 72.7s 62.6s

5R planar 102.6s 35.1s 241s 207.4s

● The solver parallelizes pretty well on 61 threads.
➢ The serial part is below 1.3% of the total time.

● Parallelizing box- and bound consistency enforcing
operators is significant for a high number of threads.

● Results on the Xeon Phi coprocessor are still much
worse than on CPU.

● It will be beneficial to utilize the hyper-threads on
MIC, but this requires careful tuning, wrt. cache
utilization and vectorization.

● It seems, for underdetermined problems, using HT
(i.e., more than one thread per core) is worthwile.
➢ It is not because of post-processing of the list of boxes

(longer than for well-determined problems)???

Results

● The solver is available at my ResearchGate profile:

https://www.researchgate.net/profile/Bartlomiej_Kubica?ev=hdr_xprf.

● The currently developed version is not available yet
– will update it in a few weeks.

● The available version does not use bound
consistency – this version has been described in the
paper in Numerical Algorithms journal.

● Feel encouraged to use and test it!

● And stay tuned for updates!

Solver

https://www.researchgate.net/profile/Bartlomiej_Kubica?ev=hdr_xprf

● Explaining the mysterious behavior of the solver
on the MIC architecture (i.e., Intel Xeon Phi).

● Tuning the solver for use with hyper-threads on
this platform.

● Preparing the hybrid version, using both host and
MIC (Intel compiler's directive:
#pragma offload target(mic)).

● Exploring other tools (hull consistency?).

● ...

Future research

● Thanks to professor Roman Wyrzykowski (and
his co-workers), from Częstochowa University of
Technology, thanks to whom I have access to the
MIC machine (environments II and III).

Acknowledgements

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

