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Invariant subspaces

Definition

A subspace U € C"* is called invariant under H € C"™ " if Hu is
in U for all uin U.
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Invariant subspaces

Definition

A subspace U € C"* is called invariant under H € C"™ " if Hu is
in U for all uin U.

Equivalent problem
Find U € C"™k and R € Ck*k st. HU = UR.
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Related non-Hermitian algebraic Riccati equation

Assumption HU = UR, U = [ ok ]
X(n—k)xk

Solve the non-Hermitian algebraic Riccati equation (NARE)
F(X):= Q + XA+ AX — XGX =0, (1)
instead of finding invariant subspaces for

oo Akxk — Grx(n—k)
—Qn—k)xk  —A(n—k)x (n—k)

e R = A — GX is the closed loop matrix associated to 1.

e A solution X of 1 is called stabilizing if the closed loop matrix
R is stable.
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Graph matrix and graph subspace

Definition

Graph matrix G(X) := [X hoxk ] :
(n—k)xk
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Graph matrix and graph subspace

Graph matrix G(X) := [X hoxk ] :
(n—k)xk

Graph subspace := Im(G(X)).
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Graph matrix and graph subspace

Graph matrix G(X) := [X oxk ] :
(n—k)xk

Graph subspace := Im(G(X)).

Almost every subspace is a graph subspace:

If U= [ Erox } full column rank, E invertible then
A(n—k)xk

U=G(AEY)E.
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Graph basis matrix

Definition

U and V full column rank matrices.

U ~ V for a square invertible matrix E, U = VE <= same
column space.
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Graph basis matrix

Definition

U and V full column rank matrices.

U ~ V for a square invertible matrix E, U = VE <= same
column space.

E . . : /
o If U= [A} with E square invertible, U ~ [AE_I] graph
basis.

e £—! — danger: can be ill conditioned.
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Permuted graph matrix

If E any square invertible submatrix of U, we can post—multiply by
E~1! to enforce an identity in a subset of rows.

1 2 3 1 0 0
4 5 6 05 05 0
U=1|7 8 9|~ 0 1 O
11 2 0 0 1
3 5 8 2 0 1

/
X

We can write this as U ~ P [ ] P permutation matrix.
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Permuted graph matrix

If E any square invertible submatrix of U, we can post—multiply by
E~1! to enforce an identity in a subset of rows.

1 2 3 1 0 O
4 5 6 05 05 O
U=1|7 8 9~ |0 1 0
1 1 2 0 0 1
3 5 8 2 0 1

We can write this as U ~ P [I

X]' P permutation matrix.

Theorem (Knuth, ‘80 or earlier, Mehrmann and Poloni, ‘12)

Each full column rank matrix U has a permuted graph basis P [ )IJ

with |x;| < 1.
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Important formulas and notation

(A® B)(C @ D) = AC ® BD,
vec(ABC) = (CT ® A) vec(B),

vec( “uppercase”) = “lowercase” ,

® Kronecker product of matrices,

vec Stacks columns of a matrix into a long vector.
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Frechet derivative of the function F

The Frechet derivative of F at X in the direction E € C(n—k)xk js
given as N
F'(X)E = E(A— GX) + (A— XG)E,

SO,

F'(x) = I ® (A= XG) + (A= GX)T @ I,y € CKn=k)xk(n=k),
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Standard Krawczyk operator

k(%x,x) =X — Rf(x) + (I — RS)(x — X)
=X —Rf(X)+ [ — R @ (A= XG) + (A- GX)T @ N](x — X),

S An interval matrix containing all slopes S for x, y € x,
Standard choice for S f'(x),

f'(x) The interval arithmetic evaluation of f'(x),

R A computed inverse of f'(x) by using the standard floating
point arithmetic.
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Aspects of complexity

e For obtaining the matrix R, one should invert a matrix of size
k(n — k) x k(n — k) cost = O(n°)

e The product RS with R full and S containing at least O(n)
non-zeros per column cost = O(n°)!

Therefore The number of arithmetic operations needed to
implement the classical Krawczyk operator is at-least O(n®)!

Challenge Reduce this cost to cubic.
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Previous works involved:

e A. Frommer and B. Hashemi: Verified computation of
square roots of a matrix, 2009 affine transformation for
reducing wrapping effect (loses uniqueness),

e B. Hashemi: Verified computation of Hermitian
(Symmetric) solutions to continuous-time algebraic
Riccati matrix equation, 2012 spectral decomposition.

New work involved:

e V. Mehrmann and F. Poloni: Doubling algorithms with

permuted Lagrangian graph bases, 2012 permuted graph
bases (loses uniqueness).
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Modified Krawczyk operator

Theorem (Rum, ‘83, Frommer and Hashemi, ‘09)

Assume that f : D C C" — C" js continuous in D. Let X € D and
z € IC" be such that X +z C D. Moreover, assume that S C C"™"
is a set of matrices containing all slopes S(X,y) fory € X+ z := x.
Finally, let R € C"*". Denote by K¢(X,R,z,S) the set

K¢(%,R,2,8) :={—Rf(X)+ (I —RS)z : S€S§,z€z}.
Then, if
K¢(X, R,2,S) C int z, (2)

the function f has a zero x* in X + K¢(X,R,z,S8) C x. Moreover,
if S also contains all slope matrices S(x,y) for x,y € x, then this
zero is unique in X.
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The relation between slopes and derivative

Consider NARE (1). Then, the interval arithmetic evaluation of
the derivative of f(x), i.e. the interval matrix

| @ (A—XG)+ (A— GX)" ® I contains slopes S(x,y) for all
X,y € X.
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Evaluate the Krawczyk operator

(K¢(%,R,2,S) := —Rf(X) + (I — RS)z,

Then, the enclosure property of interval arithmetic displays that

Kf(X,R,2z,S) Cintz= K¢(X,R,2,S) Cintz.
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Fundamental assumptions

Existence of spectral decompositions for

A— GX = ViAW, Vi, Wy, Ay € CF3k,
A1 = Diag(A11,- .-, Ak1),
ViWg = I,
A — G X = VoW, Vo, Wh, Ay € C1=R)x(n=k),
A2 = Diag(A12, - - - A(n—k)2),
VoWs = I,_y.
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Outcomes of these eigenvalue decompositions

o f/(x)=1®(A—XG)+ (A— GX)T @I converted to [Frommer,
Hashemi]

fi(x) = (Vi T @ Wy):
* T

I [Wa(A—-XG)* Wyt + |ViHA-GX)Wi| @I

>N, =V
(V1T® W2_*)7
e R=(VyTaWp)- A1 (Vo W,*), A=1aN+A @I
diagonal,

o | —Rf(x)=(V{T@W;) A%
(A — 1@ [Wa(A - XGY Wy — [V Y (A— ax)v]T ® /)
(Y @ w, ™).
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Reducing wrapping effect

New issue The problematic wrapping effect of interval arithmetic
appears in several lines of the modified Krawczyk algorithm.

Solution Use f as a linearly transformed function instead of f:
£(%) = (vlT ® W;*) f ((vl—T ® W2*)>“<> ,

(Vi T ® W5)R := x, X a solution for NARE (1). [Frommer,
Hashemi]
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Consequences of considering this affine transformation

(V7@ WS (VT e w)s (VT e ws)g) (Vi o ws)
= (W @ Wy )S(x, Y)(V "o w;)
@ Wy )(Vy T @ W)
(I®[W2(A—XG) Wyl + VYA - GX)V1]T®I>-
VoW, ) (v T e ws)

= [ 1o [Wa(A-XG)' W, T + [V ' (A-GX)W]T el | =A

=V =M1

e R = A1 diagonal,
e Decreasing the number of wrapping effects.
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Consequence of considering this affine transformation

We compute an enclosure for /Cf(?(, Ii’,i,g) in which

% = (V] ® Wy )%, % an approximate solution for 7,
e X an approximate solution for NARE (1),
e Z=W5ZVv{t
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Algorithm1: Computing an enclosure for the first term in
modified Krawczyk operator

1. Input A, A, G, Q,)v<;

2.
3. G=1y,Fvy;
4
5

Cost cubic.
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Algorithm2: Enclosing the set of second terms in modified

Krawczyk operator

e Second term (I — f§§)2 =
(/ N (/ @ [Wa(A — XGY* Wy T + [Vy YA — 6xX)W]T @ /)) 2

1. Input )V<,?;

2. M= W;Yly,;

3. P =1y, (A— (X +M)G)Ws;
4. Q=1 (A- G(X + M)V
5. E=(As—P)Y +Y(AL—Q);
6. N=E./D

7. Output N

Cost cubic.
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Algorithm3: Computation of an interval matrix X

containing at least one stabilizing solution of NARE (1)

1. Compute approximations Vi, Wi, A1 and V,, Wh, Ay for the
eigenvalue decompositions of

2. A— GX and A* — G*X* in floating point, resp;

3. {Take eig.m from MATLAB, e.g. };

4. Compute an approximate solution~)v( of NARE (1) in floating
point when H=[A — G;—Q — A];

5. {Take nare.m from MATLAB, e.g.};

6. Compute

D = diag(A2)[1, 1, .., Uusek + [1, 1, ., 1], (diag(A1)) T

7. Compute interval matrices ly, and Iy, containing V{ ! and
WL, resp;

8. {Take verifylss.m from INTLAB, e.g.};

9. Compute the interval matrix H with —Rf (%) € H, where H is
obtained from Algorithm1;
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Algorithm3: Computation of an interval matrix X

containing at least one stabilizing solution of NARE (1)

10.
11.
12.
13.
14.
15.
16.

Put k=0and Z=H:
For k =1,..., knax do

Put Y :=0(0,Z-[1—e,1+€]); {e -inflation}
Compute N using X,Y in Algorithm 2;

If K:=H+ N CintVY then {successful }
R=K;

break;

end if;
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Algorithm3: Computation of an interval matrix X

containing at least one stabilizing solution of NARE (1)

17.
18.
19.
20.
21.
22.
23.
24,
25.
26.

Z=YnK;
Comput N as in Algorithm?2 using Z instead of Y;
If K=H+N Cint Z then {successful}

~
A ~

R =K;

break;

end if;

2=2nK;

end for;

X:=X+ W2*IA?|V1;
Output X.
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Algorithm4: Verified computation of solution of NARE (1)

using permuted graph bases

1. Input A A, G, Q;
2. Compute an approximate solution X of NARE (1) in floating
point when

3. H=[A -G, —Q —A];
4. {Take nare.m from MATLAB};

5. Compute a permutatiom matrix P and Y such that

/ T / |
= ) ij < .
[X] P [Y] R; P permutation and |y;i| < 1;

6. {Take canBasisFromSubspace from MATLAB} [Poloni, 12];
7. PHPT = [AP _9’};

—Q A
8. Compute Y by Algorithm 3;
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Algorithm4: Verified computation of solution of NARE (1)

using permuted graph bases

10. X =U,/Uy;
11. Qutput X.
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Algorithm5: Computing an interval matrix U containing at

least one invariant subspace of H

1 Input H=[A —G; —Q —A];
2. 2. Use Algorithm 4 for finding Y;
3. Puuu=pP7 [¢]

4. Output U.
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Numerical experiments
Example 5

e Examples in fluid queues generated by mriccatix.m [B.
lannazzo| for NAREs whose coefficients form an M-matrix.
Example from [CH Guo 2001]

N =4
| a | time(s) | mr ‘ mrp arp
0 _

0.5 | 0.028449 | 1.0270e-15 | 9.2839e-15 | 4.8572e-15
0.99 | 0.032010 | 1.1732e-15 | 2.3503e-14 | 7.1739%e-15
N =50

| a | time(s) | mr mrp arp

0 _

0.5 | 0.100178 | 1.8890e-12 | 9.5237e-10 | 3.6791e-11
0.99 | 0.098313 | 1.0934e-12 | 9.0440e-11 | 2.0001e-11
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Numerical experiments
Example 5

N =120
| a | time(s) | mr mrp arp
0 _
0.5 | 0.577645 | 1.4977e-11 | 2.6043e-09 | 7.2504e-10
0.99 -

F. Poloni and T. Hagqiri SWIM 2015 Permuted Graph Bases



Numerical experiments
Example 13

Example from [Bai, Guo, Xu 2006]

N=4
| a | time(s) | mr ‘ mrp arp
0 0.035132 | 1.7045e-16 | 2.2970e-14 | 4.6834e-15
0.5 | 0.036441 | 2.4257e-16 | 2.9750e-14 | 6.4049e-15
0.99 | 0.032630 | 1.8352e-16 | 1.8581e-14 | 4.3609e-15
N =50
’ « ‘ time(s) ‘ mr mrp arp
0 | 0.101496 | 1.9303e-15 | 0.7835 | 9.4636e-08
0.5 | 0.162545 | 3.0240e-15 | 0.4497 | 1.4641e-07
0.99 | 0.098980 | 3.6224e-15 | 0.9427 | 3.1007e-07
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Numerical experiments
Example 13

N =110

| a | time(s) | mr mrp arp

0 _
0.5 | 0.451587 | 8.1046e-15 | 0.5054 | 2.5093e-07
0.99 | 0.437653 | 1.1425e-14 | 0.6875 | 4.5676e-07
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Numerical experiments
Example 15

Example from [Juang, Lin, 1999

N=4
| a | time(s) | mr ‘ mrp arp
0 -
0.5 | 0.028168 | 3.8858e-16 | 1.5963e-15 | 8.6762e-16
0.99 | 0.023996 | 5.2403e-14 | 3.8371e-14 | 3.0541e-14
N =40
’ « ‘ time(s) ‘ mr mrp arp
0 -
0.5 | 0.048736 | 2.0373e-14 | 8.5094e-14 | 1.3595e-14
0.99 | 0.046778 | 2.0397e-12 | 1.1240e-12 | 7.9844e-13
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Numerical experiments
Example 15

N = 400
’ e ‘ time(s) ‘ mr mrp arp
0 -
0.5 | 4.534196 | 3.9607e-13 | 1.5318e-12 | 2.1952e-13
0.99 | 5.039913 | 2.8733e-11 | 1.4644e-11 | 8.8724e-12
N = 1000
| a | time(s) | mr mrp arp
0 -
0.5 | 63.691614 | 9.2215e-13 | 3.5582e-12 | 4.1113e-13
0.99 | 76.882187 | 5.2028e-11 | 2.6716e-11 | 1.4962e-11
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Conclusions?

Thanks for your attention! |
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