Permuted Graph Bases for Verified Computation of Invariant Subspaces

Federico Poloni¹ Tayyebe Haqiri²

¹U Pisa, Italy, Dept of Computer Sciences ²U Kerman, Iran, Dept of Mathematics and Computer Sciences

> SWIM 2015 9 June, Prague

Invariant subspaces

Definition

A subspace $U \in \mathbb{C}^{n \times k}$ is called invariant under $H \in \mathbb{C}^{n \times n}$ if Hu is in U for all u in U.

Invariant subspaces

Definition

A subspace $U \in \mathbb{C}^{n \times k}$ is called invariant under $H \in \mathbb{C}^{n \times n}$ if Hu is in U for all u in U.

Equivalent problem

Find $U \in \mathbb{C}^{n \times k}$ and $R \in \mathbb{C}^{k \times k}$ s.t. HU = UR.

Related non-Hermitian algebraic Riccati equation

Assumption
$$HU = UR$$
, $U = \begin{bmatrix} I_{k \times k} \\ X_{(n-k) \times k} \end{bmatrix}$,

Solve the non-Hermitian algebraic Riccati equation (NARE)

$$F(X) := Q + XA + \tilde{A}X - XGX = 0, \tag{1}$$

instead of finding invariant subspaces for

$$H = \begin{bmatrix} A_{k \times k} & -G_{k \times (n-k)} \\ -Q_{(n-k) \times k} & -\tilde{A}_{(n-k) \times (n-k)} \end{bmatrix}.$$

- R = A GX is the closed loop matrix associated to 1.
- A solution X of 1 is called stabilizing if the closed loop matrix R is stable.

Graph matrix and graph subspace

Definition

Graph matrix
$$\mathcal{G}(X) := \begin{bmatrix} I_{k \times k} \\ X_{(n-k) \times k} \end{bmatrix}$$
.

Graph matrix and graph subspace

Definition

Graph matrix
$$\mathcal{G}(X) := \begin{bmatrix} I_{k \times k} \\ X_{(n-k) \times k} \end{bmatrix}$$
.

Definition

Graph subspace := $Im(\mathcal{G}(X))$.

Graph matrix and graph subspace

Definition

Graph matrix
$$\mathcal{G}(X) := \begin{bmatrix} I_{k \times k} \\ X_{(n-k) \times k} \end{bmatrix}$$
.

Definition

Graph subspace :=
$$Im(\mathcal{G}(X))$$
.

Almost every subspace is a graph subspace:

If
$$U = \begin{bmatrix} E_{k \times k} \\ A_{(n-k) \times k} \end{bmatrix}$$
 full column rank, E invertible then $U = \mathcal{G}(AE^{-1})E$.

Graph basis matrix

Definition

U and V full column rank matrices.

 $U \sim V$ for a square invertible matrix E, $U = VE \iff$ same column space.

Graph basis matrix

Definition

U and V full column rank matrices.

 $U \sim V$ for a square invertible matrix E, $U = VE \iff$ same column space.

- If $U = \begin{bmatrix} E \\ A \end{bmatrix}$, with E square invertible, $U \sim \begin{bmatrix} I \\ AE^{-1} \end{bmatrix}$ graph basis.
- $E^{-1} \longrightarrow$ danger: can be ill conditioned.

Permuted graph matrix

If E any square invertible submatrix of U, we can post–multiply by E^{-1} to enforce an identity in a subset of rows.

Example

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 1 & 2 \\ 3 & 5 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix}.$$

We can write this as $U \sim P \begin{bmatrix} I \\ X \end{bmatrix}$, P permutation matrix.

Permuted graph matrix

If E any square invertible submatrix of U, we can post–multiply by E^{-1} to enforce an identity in a subset of rows.

Example

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 1 & 2 \\ 3 & 5 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix}.$$

We can write this as $U \sim P \begin{bmatrix} I \\ X \end{bmatrix}$, P permutation matrix.

Theorem (Knuth, '80 or earlier, Mehrmann and Poloni, '12)

Each full column rank matrix U has a permuted graph basis $P\begin{bmatrix} I \\ X \end{bmatrix}$ with $|\mathbf{x}_{ii}| \leq 1$.

Important formulas and notation

$$(A \otimes B)(C \otimes D) = AC \otimes BD,$$

 $\text{vec}(ABC) = (C^T \otimes A) \text{vec}(B),$
 $\text{vec}(\text{"uppercase"}) = \text{"lowercase"},$

Kronecker product of matrices,
 vec Stacks columns of a matrix into a long vector.

Frechet derivative of the function F

The Frèchet derivative of F at X in the direction $E \in \mathbb{C}^{(n-k)\times k}$ is given as

$$F'(X)E = E(A - GX) + (\tilde{A} - XG)E,$$

SO,

$$f'(x) = I_k \otimes (\tilde{A} - XG) + (A - GX)^T \otimes I_{n-k} \in \mathbb{C}^{k(n-k) \times k(n-k)}$$
.

Standard Krawczyk operator

$$k(\tilde{x}, \mathbf{x}) = \tilde{x} - Rf(x) + (I - R\mathbf{S})(\mathbf{x} - \tilde{x})$$

= $\tilde{x} - Rf(x) + [I - R(I \otimes (\tilde{A} - \mathbf{X}G) + (A - G\mathbf{X})^T \otimes I)](\mathbf{x} - \tilde{x}),$

- S An interval matrix containing all slopes S for $x, y \in \mathbf{x}$,
- Standard choice for $\mathbf{S} \mathbf{f}'(\mathbf{x})$,
- f'(x) The interval arithmetic evaluation of f'(x),
- R A computed inverse of f'(x) by using the standard floating point arithmetic.

Aspects of complexity

- For obtaining the matrix R, one should invert a matrix of size $k(n-k) \times k(n-k) \cos t = O(n^6)$
- The product RS with R full and S containing at least $\mathcal{O}(n)$ non-zeros per column $cost = \mathcal{O}(n^5)!$

Therefore The number of arithmetic operations needed to implement the classical Krawczyk operator is at-least $\mathcal{O}(n^5)$!

Challenge Reduce this cost to cubic.

Used tricks

Previous works involved:

- A. Frommer and B. Hashemi: Verified computation of square roots of a matrix, 2009 affine transformation for reducing wrapping effect (loses uniqueness),
- B. Hashemi: Verified computation of Hermitian (Symmetric) solutions to continuous-time algebraic Riccati matrix equation, 2012 spectral decomposition.

New work involved:

• V. Mehrmann and F. Poloni: Doubling algorithms with permuted Lagrangian graph bases, 2012 permuted graph bases (loses uniqueness).

Modified Krawczyk operator

Theorem (Rum, '83, Frommer and Hashemi, '09)

Assume that $f: D \subseteq \mathbb{C}^n \to \mathbb{C}^n$ is continuous in D. Let $\tilde{\mathbf{x}} \in D$ and $\mathbf{z} \in \mathbb{I}\mathbb{C}^n$ be such that $\tilde{\mathbf{x}} + \mathbf{z} \subseteq D$. Moreover, assume that $S \subseteq \mathbb{C}^{n \times n}$ is a set of matrices containing all slopes $S(\tilde{\mathbf{x}}, y)$ for $y \in \tilde{\mathbf{x}} + \mathbf{z} := \mathbf{x}$. Finally, let $R \in \mathbb{C}^{n \times n}$. Denote by $\mathcal{K}_f(\tilde{\mathbf{x}}, R, \mathbf{z}, S)$ the set

$$\mathcal{K}_f(\tilde{x}, R, \mathbf{z}, \mathcal{S}) := \{-Rf(\tilde{x}) + (I - RS)z : S \in \mathcal{S}, z \in \mathbf{z}\}.$$

Then, if

$$\mathcal{K}_f(\tilde{\mathbf{x}}, R, \mathbf{z}, \mathcal{S}) \subseteq \text{int } \mathbf{z},$$
 (2)

the function f has a zero x^* in $\tilde{x} + \mathcal{K}_f(\tilde{x}, R, \mathbf{z}, \mathcal{S}) \subseteq \mathbf{x}$. Moreover, if \mathcal{S} also contains all slope matrices S(x, y) for $x, y \in \mathbf{x}$, then this zero is unique in \mathbf{x} .

The relation between slopes and derivative

Theorem

Consider NARE (1). Then, the interval arithmetic evaluation of the derivative of f(x), i.e. the interval matrix $I \otimes (\tilde{A} - \mathbf{X}G) + (A - G\mathbf{X})^T \otimes I$ contains slopes S(x, y) for all $x, y \in \mathbf{x}$.

Evaluate the Krawczyk operator

$$(\mathbf{K}_f(\tilde{\mathbf{x}}, R, \mathbf{z}, \mathbf{S}) := -Rf(\tilde{\mathbf{x}}) + (I - R\mathbf{S})\mathbf{z},$$

Then, the enclosure property of interval arithmetic displays that

$$\mathbf{K}_f(\tilde{x}, R, \mathbf{z}, \mathbf{S}) \subset \operatorname{int} \mathbf{z} \Longrightarrow \mathcal{K}_f(\tilde{x}, R, \mathbf{z}, \mathcal{S}) \subseteq \operatorname{int} \mathbf{z}.$$

Fundamental assumptions

Existence of spectral decompositions for

$$A - GX = V_1 \Lambda_1 W_1, \qquad V_1, W_1, \Lambda_1 \in \mathbb{C}^{k \times k}, \ \Lambda_1 = \operatorname{Diag}(\lambda_{11}, \dots, \lambda_{k1}), \ V_1 W_1 = I_k, \ ilde{A}^* - G^* X^* = V_2 \Lambda_2 W_2, \qquad V_2, W_2, \Lambda_2 \in \mathbb{C}^{(n-k) \times (n-k)}, \ \Lambda_2 = \operatorname{Diag}(\lambda_{12}, \dots, \lambda_{(n-k)2}), \ V_2 W_2 = I_{n-k}.$$

Outcomes of these eigenvalue decompositions

• $f'(x) = I \otimes (\tilde{A} - XG) + (A - GX)^T \otimes I$ converted to [Frommer, Hashemi]

$$f'(x) = (V_1^{-T} \otimes W_2^*) \cdot \left(I \otimes \left[\underbrace{W_2(\tilde{A} - XG)^* W_2^{-1}}_{\cong \Lambda_2} \right]^* + \left[\underbrace{V_1^{-1}(A - GX)V_1}_{\cong \Lambda_1} \right]^T \otimes I \right) \cdot (V_1^T \otimes W_2^{-*}),$$

- $R = (V_1^{-T} \otimes W_2^*) \cdot \Delta^{-1} \cdot (V_1^T \otimes W_2^{-*}), \ \Delta = I \otimes \Lambda_2^* + \Lambda_1^T \otimes I$ diagonal,
- $I Rf'(x) = (V_1^{-T} \otimes W_2^*) \cdot \Delta^{-1} \cdot$ $\left(\Delta I \otimes [W_2(\tilde{A} XG)^* W_2^{-1}]^* [V_1^{-1}(A GX)V_1]^T \otimes I\right)$ $(V_1^T \otimes W_2^{-*}).$

Reducing wrapping effect

New issue The problematic wrapping effect of interval arithmetic appears in several lines of the modified Krawczyk algorithm.

Solution Use \hat{f} as a linearly transformed function instead of f:

$$\hat{f}(\hat{x}) := \left(V_1^T \otimes W_2^{-*}\right) f\left((V_1^{-T} \otimes W_2^*)\hat{x}\right),\,$$

 $(V_1^{-T} \otimes W_2^*)\hat{x} := x$, X a solution for NARE (1). [Frommer, Hashemi]

Consequences of considering this affine transformation

•
$$\hat{S} = \{\hat{S}(\hat{x}, \hat{y}) : \hat{x}, \hat{y} \in \hat{\mathbf{x}} := \hat{x} + \hat{z}\}\$$

$$= (V_1^T \otimes W_2^{-*}) S\left((V_1^{-T} \otimes W_2^*) \hat{x}, (V_1^{-T} \otimes W_2^*) \hat{y}\right) (V_1^{-T} \otimes W_2^*)$$

$$= (V_1^T \otimes W_2^{-*}) S(x, y) (V_1^{-T} \otimes W_2^*)$$

$$= (V_1^T \otimes W_2^{-*}) (V_1^{-T} \otimes W_2^*)$$

$$\left(I \otimes [W_2(\tilde{A} - XG)^* W_2^{-1}]^* + [V_1^{-1}(A - GX)V_1]^T \otimes I\right)$$

$$(V_1^T \otimes W_2^{-*}) (V_1^{-T} \otimes W_2^*)$$

$$= \left(I \otimes [\underline{W_2(A - XG)^* W_2^{-1}}]^* + [\underline{V_1^{-1}(A - GX)V_1}]^T \otimes I\right) \cong \Delta$$

- $\hat{R} = \Delta^{-1}$ diagonal,
- Decreasing the number of wrapping effects.

Consequence of considering this affine transformation

We compute an enclosure for $\mathcal{K}_{\hat{f}}(\hat{\mathring{x}},\hat{R},\hat{\mathbf{z}},\hat{\mathcal{S}})$ in which

- $\hat{x} = (V_1^T \otimes W_2^{-*})\tilde{x}$, \hat{x} an approximate solution for \hat{f} ,
- \check{X} an approximate solution for NARE (1),
- $\mathbf{Z} = W_2^* \hat{\mathbf{Z}} V_1^{-1}$.

Algorithm1: Computing an enclosure for the first term in modified Krawczyk operator

- First term $-\hat{R}\hat{f}(\mathring{x}) = -\Delta^{-1}(V_1^T \otimes W_2^{-*})f(\check{x}).$
 - 1. Input $A, \tilde{A}, G, Q, \check{X}$;
 - 2. $\hat{\mathbf{F}} = Q + \check{X}A + \tilde{A}\check{X} \check{X}G\check{X};$
 - 3. $\hat{\mathbf{G}} = \mathbf{I}_{W_2}^* \hat{\mathbf{F}} V_1;$
 - 4. $\hat{\mathbf{H}} = -\hat{\mathbf{G}}./D$;
 - 5. Output **Ĥ**

Cost cubic.

Algorithm2: Enclosing the set of second terms in modified Krawczyk operator

• Second term
$$(I - \hat{R}\hat{S})\hat{z} = (I - \Delta^{-1} (I \otimes [W_2(\tilde{A} - XG)^*W_2^{-1}]^* + [V_1^{-1}(A - GX)V_1]^T \otimes I))\hat{z}.$$

- 1. Input $\check{X}, \hat{\mathbf{Y}}$;
- 2. $\hat{\mathbf{M}} = W_2^* \hat{\mathbf{Y}} \mathbf{I}_{V_1};$
- 3. $\hat{\mathbf{P}} = \mathbf{I}_{W_2}^* (\tilde{A} (\check{X} + \hat{\mathbf{M}})G)W_2^*;$
- 4. $\hat{\mathbf{Q}} = \mathbf{I}_{V_1}^* (A G(\check{X} + \hat{\mathbf{M}})) V_1;$
- 5. $\hat{\mathbf{E}} = (\Lambda_2^* \hat{\mathbf{P}})\hat{\mathbf{Y}} + \hat{\mathbf{Y}}(\Lambda_1 \hat{\mathbf{Q}});$
- 6. $\hat{N} = \hat{E}./D;$
- 7. **Output N**.

Cost cubic.

Algorithm3: Computation of an interval matrix **X** containing at least one stabilizing solution of NARE (1)

- 1. Compute approximations V_1, W_1, Λ_1 and V_2, W_2, Λ_2 for the eigenvalue decompositions of
- 2. A GX and $\tilde{A}^* G^*X^*$ in floating point, resp;
- 3. {Take eig.m from MATLAB, e.g. };
- 4. Compute an approximate solution \check{X} of NARE (1) in floating point when $H = \begin{bmatrix} A & -G \\ -Q & -\tilde{A} \end{bmatrix}$;
- {Take nare.m from MATLAB, e.g.};
- 6. Compute $D = \overline{\operatorname{diag}(\Lambda_2)}[1, 1, \dots, 1]_{1 \times k} + [1, 1, \dots, 1]_{1 \times n k}^T (\operatorname{diag}(\Lambda_1))^T;$
- 7. Compute interval matrices \mathbf{I}_{V_1} and \mathbf{I}_{W_2} containing V_1^{-1} and W_2^{-1} , resp;
- 8. {Take verifylss.m from INTLAB, e.g.};
- 9. Compute the interval matrix $\hat{\mathbf{H}}$ with $-\hat{R}\hat{f}(\hat{x}) \in \hat{\mathbf{H}}$, where $\hat{\mathbf{H}}$ is obtained from Algorithm1;

Algorithm3: Computation of an interval matrix **X** containing at least one stabilizing solution of NARE (1)

```
9. Put k=0 and \hat{\mathbf{Z}}=\hat{\mathbf{H}};
10. For k=1,\ldots,k_{\mathsf{max}} do
11. Put \hat{\mathbf{Y}}:=\Box(0,\hat{\mathbf{Z}}\cdot[1-\epsilon,1+\epsilon]); \{\epsilon \text{-inflation}\}
12. Compute \hat{\mathbf{N}} using \check{X},\hat{\mathbf{Y}} in Algorithm 2;
13. If \hat{\mathbf{K}}:=\hat{\mathbf{H}}+\hat{\mathbf{N}}\subset\inf\hat{\mathbf{Y}} then \{\text{successful}\}
14. \hat{\mathbf{R}}=\hat{\mathbf{K}};
15. break;
16. end if:
```

Algorithm3: Computation of an interval matrix **X** containing at least one stabilizing solution of NARE (1)

17. $\hat{\hat{\mathbf{Z}}} = \hat{\mathbf{Y}} \cap \hat{\mathbf{K}}$: 18. Comput $\hat{\mathbf{N}}$ as in Algorithm2 using $\hat{\mathbf{Z}}$ instead of $\hat{\mathbf{Y}}$; 19. If $\hat{\mathbf{K}} = \hat{\mathbf{H}} + \hat{\hat{\mathbf{N}}} \subset \operatorname{int} \hat{\hat{\mathbf{Z}}}$ then {successful} 20. $\hat{\bf R} = \hat{\hat{\bf K}}$: 21. break: 22. **end if**: 23. $\hat{\mathbf{Z}} = \hat{\mathbf{Z}} \cap \hat{\hat{\mathbf{K}}}$ 24. end for: 25. $\mathbf{X} := \check{X} + W_2^* \hat{\mathbf{R}} \mathbf{I}_{V_1}$;

26. Output **X**.

Algorithm4: Verified computation of solution of NARE (1) using permuted graph bases

- 1. Input *A*, *A*, *G*, *Q*;
- 2. Compute an approximate solution X of NARE (1) in floating point when
- 3. $H = [A G; -Q \tilde{A}];$
- {Take nare.m from MATLAB};
- 5. Compute a permutation matrix P and Y such that $\begin{bmatrix} I \end{bmatrix} = \mathbf{P} \begin{bmatrix} I \end{bmatrix} = \mathbf{P} \begin{bmatrix} I \end{bmatrix}$

$$\begin{bmatrix} I \\ X \end{bmatrix} = P^T \begin{bmatrix} I \\ Y \end{bmatrix} R; P \text{ permutation and } |y_{ij}| \le 1;$$

- {Take canBasisFromSubspace from MATLAB} [Poloni, 12];
- 7. $PHP^T = \begin{bmatrix} A_p & -G_p \\ -Q_p & -\tilde{A}_p \end{bmatrix}$;
- 8. Compute Y by Algorithm 3;

Algorithm4: Verified computation of solution of NARE (1) using permuted graph bases

9.
$$\begin{bmatrix} \mathbf{U}_1 \\ \mathbf{U}_2 \end{bmatrix} = P^T \begin{bmatrix} \mathbf{I} \\ \mathbf{Y} \end{bmatrix};$$

- 10. $X = U_2/U_1$;
- 11. Output **X**.

Algorithm5: Computing an interval matrix $\bf U$ containing at least one invariant subspace of $\bf H$

- 1. Input $H = [A G; -Q \tilde{A}];$
- 2. 2. Use Algorithm 4 for finding Y;
- 3. Put $\mathbf{U} = P^T \begin{bmatrix} \mathbf{I} \\ \mathbf{Y} \end{bmatrix}$;
- 4. Output **U**.

• Examples in fluid queues generated by mriccatix.m [B. lannazzo] for NAREs whose coefficients form an *M*-matrix. Example from [CH Guo 2001]

$$N = 4$$

α	time(s)	mr	mrp	arp
0	-			
0.5	0.028449	1.0270e-15	9.2839e-15	4.8572e-15
0.99	0.032010	1.1732e-15	2.3503e-14	7.1739e-15

$$N = 50$$

α	time(s)	mr	mrp	arp
0	-			
0.5	0.100178	1.8890e-12	9.5237e-10	3.6791e-11
0.99	0.098313	1.0934e-12	9.0440e-11	2.0001e-11

$$N = 120$$

α	time(s)	mr	mrp	arp
0	-			
0.5	0.577645	1.4977e-11	2.6043e-09	7.2504e-10
0.99	-			

Example from [Bai, Guo, Xu 2006]

$$N = 4$$

α	time(s)	mr	mrp	arp
0	0.035132	1.7045e-16	2.2970e-14	4.6834e-15
0.5	0.036441	2.4257e-16	2.9750e-14	6.4049e-15
0.99	0.032630	1.8352e-16	1.8581e-14	4.3609e-15

$$N = 50$$

α	time(s)	mr	mrp	arp
0	0.101496	1.9303e-15	0.7835	9.4636e-08
0.5	0.162545	3.0240e-15	0.4497	1.4641e-07
0.99	0.098980	3.6224e-15	0.9427	3.1007e-07

$$N = 110$$

α	time(s)	mr	mrp	arp
0	-			
0.5	0.451587	8.1046e-15	0.5054	2.5093e-07
0.99	0.437653	1.1425e-14	0.6875	4.5676e-07

Example from [Juang, Lin, 1999]

$$N = 4$$

α	time(s)	mr	mrp	arp
0	-			
0.5	0.028168	3.8858e-16	1.5963e-15	8.6762e-16
0.99	0.023996	5.2403e-14	3.8371e-14	3.0541e-14

$$N = 40$$

α	time(s)	mr	mrp	arp
0	-			
0.5	0.048736	2.0373e-14	8.5094e-14	1.3595e-14
0.99	0.046778	2.0397e-12	1.1240e-12	7.9844e-13

$$N = 400$$

α	time(s)	mr	mrp	arp
0	-			
0.5	4.534196	3.9607e-13	1.5318e-12	2.1952e-13
0.99	5.039913	2.8733e-11	1.4644e-11	8.8724e-12

$$N = 1000$$

α	time(s)	mr	mrp	arp
0	-			
0.5	63.691614	9.2215e-13	3.5582e-12	4.1113e-13
0.99	76.882187	5.2028e-11	2.6716e-11	1.4962e-11

Conclusions?

Thanks for your attention!