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Introduction

Definition of the problem:

Given f : [0, 1]m → Rn, decide whether f (x) = 0 is satisfiable.

Let Bk be the set of boxes in Rk with rational vertices.

We assume that an interval function If : Bm → Bn is given such
that

• For each B ∈ Bm it holds that If (B) ⊇ f (B), and

• “If the diameter of B is small enough, then the diameter of
If (B) is small.”
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Verifying non-existence of zeros

If [0, 1]m is covered by a grid of boxes Bj

and 0 /∈ If (Bj) for all j
then f (x) = 0 has no solution.

f(x)

0 1B

B × If (B)

If f (x) = 0 has no solution, then the above test eventually
succeeds.
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Verifying existence of zeros

Common techniques for zero verification in case m = n:

• Interval Newton (invertible Jacobi matrix needed)

• Brouwer’s fpp: If f (x) + x maps a ball to itself, then f (x) + x
has a fixed point

• Miranda’s theorem, Borsuk’s theorem

• Topological degree computation: if deg (f ,B) 6= 0 then f has
a zero in B

B

f

∂B

f(∂B)

deg(f,B) = 2

• The degree can be computed, given If .

[ Franek, Ratschan, Effective Topological Degree Computation
Based on Interval Arithmetic, AMS Math of Compu, 2015 ]
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There exists ε > 0 s.t. each continuous g , ‖g − f ‖ < ε, has a zero.

This is never the case for overdetermined systems (m < n).

If m = n and f (x) = 0 is robust, then the degree test eventually
succeeds. [ Franek, Ratschan, Zgliczynski, Quasi-decidability of a
Fragment of the First-order Theory of Real Numbers ]
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Robustness

If f (x) = 0 has a “non-robust” zero, then it may be indetectable
via the If oracle.

0 1



Section method

Assume that m > n (underdetermined systems).

One way how to verify a zero is to fix certain m − n coordinates to
be α and analyze f (α, ·) = 0.

[0, 1]2

f(x, y) = 0
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f(xj , ·) = 0

If df (x) is regular in each x ∈ f −1(0), then the section test
eventually succeeds.
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Incompleteness of the section method.

Surprisingly, the section method may fail to identify a zero even in
robust cases.

The following function H : [−1, 1]4 → R3 has a zero in the origin:
x1
x2
x3
x4

 H7−→

 2(x1x3 + x2x4)
2(x2x3 − x1x4)

x2
1 + x2

2 − x2
3 − x2

4

 .

But

• Arbitrary continuous g , ‖g − H‖ ≤ 1, has a zero.

• For each α ∈ R and i ∈ {1, . . . , 4}, H(xi = α, ·) has no robust
zero.

No analogy in smaller dimensions m, n.
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Topological methods

One way to built techniques capable of verifying zero in
underdetermined cases is via topological methods.

It is natural to address the robust satisfiability problem

Given continuous f : X → Rn and r > 0, does
each continuous g , ‖g − f ‖ ≤ r , has a zero?

Theorem
If X is compact, then the above robust satisfiability problem is
equivalent to the non-existence of the following extension:

X

f −1(Sn−1(r))

⊆

6

f
- Sn−1(r)

-
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Topological methods

X

f −1(Sn−1(r))

⊆

6

f
- Sn−1(r)

-

• Extendability depends only on the homotopy class of f |Sn−1(r)

• In generic cases, the above spaces and maps can be
approximated by triangulated spaces and piecewise linear
maps.

• The extension problem for piecewise linear maps on
triangulated spaces is decidable if dim X = m ≤ 2n − 3.

[ Matoušek, Čadek, Krčál, Wagner: Extending Continuous
Maps: Polynomiality and Undecidability, STOC 13]



Topological methods

X

f −1(Sn−1(r))

⊆

6

f
- Sn−1(r)

-

• Extendability depends only on the homotopy class of f |Sn−1(r)

• In generic cases, the above spaces and maps can be
approximated by triangulated spaces and piecewise linear
maps.

• The extension problem for piecewise linear maps on
triangulated spaces is decidable if dim X = m ≤ 2n − 3.
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Robust satisfiability problem

Assume that X is a triangulation of [0, 1]m and f : X → Rn is
piecewise linear.

Theorem
The problem of deciding, for m, n,X , f and r > 0 whether or not
each continuous g, ‖g − f ‖ ≤ r , has a zero,

is decidable if m ≤ 2n − 3 or n is even.

If n is fixed and m ≤ 2n − 3, then the decision procedure is
polynomial.

[Franek, Krčál, Robust Satisfiability of Systems of Equations,
SODA 2014 ]

If f is given via an interval function If , we can algorithmically
construct an arbitrary close piecewise linear approximation.
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Problems

• Interesting instances of zero detection problems in
underdetermined systems?

• Natural instances of zero detection problems with incomplete
information? An approximation of f can be given as a
multidimensional bitmap, for example.

• Effective implementation? Realistic only in low dimensions.

• If f is given via a formula, does the “Section method”
succeeds in most natural cases?
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Partial extensions..

The extension problem is solved hierarchically:

A Sn−1

A ∪X(n−1)

A ∪X(n)

A ∪X(2n−3)

A ∪X(2n−2)

X

If an extension f : A ∪ X (k) is given and k < 2n − 3, we can
compute the obstruction to extendability to A ∪ X (k+1):
the obstruction is an element of Hk+1(X ,A, πk(Sn−1)).
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iff Section method
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