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Guaranteed simulation of differential equations

Recall of Ordinary differential equations E’
ENSTA
ParisTech
Given by
y'=f(y.t)

Initial Value Problems
y' =1f(y.t), y(0)=yx

Numerical simulation of IVPs till a time ¢,
Compute y; = y(t;) with t; € {0, t1,..., tp}
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Guaranteed simulation of differential equations

Validated simulation of IVPs €4
ENSTA
Produces a list of boxes [y;] and [;] such that ParisTech

> y(tj) € [yj] with tj € {0, t1,..., tp}

> y(t) €[] for all t € [t), tji1]
Method of Lohner

1. Find [y;] with Picard-Lindelof operator

2. Compute [yj;+1] with a validated integration scheme : Taylor
(Vnode-LP) or Runge-Kutta (Dynlbex)
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Differential Algebraic Equations

Differential Algebraic Equations E’
ENSTA

ParisTech

General form: implicit
F(t7.y7.y/7"~) — 0, tO S t S tend

y' = DAE 15t order, y"” = DAE 2", etc.

(all DAEs can be rewritten in DAE of 1° order)

Hessenberg form: Semi-explicit (index: distance to ODE)

: y'=f(t,x,y) . { y'=f(t,x,y)
index 1 : index 2 :

[ { 0=gl(t,xy) 0=g(t,x)

y : state variables, x : algebraic variables
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Differential Algebraic Equations

Differential Algebraic Equations E’

ENSTA
ParisTech

General form: implicit

F(tay’y,a"') =0, to <t < tend
y' = DAE 1% order, y” = DAE 2", etc.
(all DAEs can be rewritten in DAE of 1° order)

Hessenberg form: Semi-explicit (index: distance to ODE)

: . y/:f(t,X,y) : . y/:f(t,X,y)
Endexl. { O:g(t,x,y)} Endex2. { 0 = g(t,x) }

y . state variables, x : algebraic variables

= Focus on Hessenberg index-1: Simulink, Modelica-like, etc.
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Differential Algebraic Equations

Hessenberg index-1 E’
ENSTA

ParisTech

: . y/:f(t,X,y)
[ndex 1: { 0= g(t, % y) )
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Differential Algebraic Equations

Hessenberg index-1 E’
ENSTA

ParisTech

: y' = f(t,x,y)
index 1 :
{ 0=g(t,x,y)

Some of dependent variables occur without their derivatives !
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Differential Algebraic Equations

Hessenberg index-1 E’
ENSTA

ParisTech

/
, y' = f(t,x,y)
index 1 :
[ { Ozg(t,X,y)J
Some of dependent variables occur without their derivatives !

Different from ODE + constraint

/
y' =f(t,y)
v to St < tend
{ 0=2g(y,y) e"

= Direct with contractor approach

. Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 5



Differential Algebraic Equations

A basic example E’

ENSTA
ParisTech

System in Hessenberg index-1 form

!/
y=y+x+1
0) =1.0 and x(0) = 0.0
{(}/+1)*x+2:0 y(0) (0)
Simulation = stiffness (in general)
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Differential Algebraic Equations

Validated simulation of a DAE E’
ENSTA

ParisTech

As for ODE: a list of boxes [y;] and [§;] such that
> y(t;) € [yi] with t; € {0, t1,...,tn}
> y(t) € [yi] for all t € [t;, tit1]
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Differential Algebraic Equations

Validated simulation of a DAE E’
ENSTA

ParisTech

As for ODE: a list of boxes [y;] and [§;] such that
> y(t;) € [yi] with t; € {0, t1,...,tn}
> y(t) € [yi] for all t € [t;, tit1]

But in addition: a list of boxes [x;] and [%;] such that
» x(t;) € [x;] with t; € {0, t1,...,tn}
» x(t) € [X] for all t € [t;, tit1]

. Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 7



Differential Algebraic Equations

Validated simulation of a DAE E’
ENSTA

As for ODE: a list of boxes [y;] and [¥;] such that paristech
> y(ti) € [yi] with t; € {0, t1,..., tn}

> y(t) € [yi] for all t € [t;, tit1]

But in addition: a list of boxes [x;] and [%;] such that
» x(t;) € [x;] with t; € {0, t1,...,tn}
» x(t) € [X] for all t € [t;, tit1]

Both validate
> y'(t) € f(ti, [x], [v])
» Ix € [x],3y € [vi] : g(ti,x,y) =0
> y'(t) € f(t,[%], [7i]), Vt € [ti, tiga]
. > YVt € [t;, tiv1], Ix € [X], Ty € [7] - g(t,x,y) =0
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Approach to simulate DAE with guarantee

Based on Lohner two-step approach E’
ENSTA

ParisTech
Step 1- A priori enclosure of state and algebraic variables

How find the enclosure [X] on integration step ?

Assume that g—f is locally reversal

we are able to find the unique x = ¢(y) (implicit function
theorem), and then:

y' = f((y),y)

and finally we could apply Picard-Lindelof to prove existence and
uniqueness, but...
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Approach to simulate DAE with guarantee

Based on Lohner two-step approach E’
ENSTA

ParisTech

Step 1- A priori enclosure of state and algebraic variables

How find the enclosure [X] on integration step ?

Og
ox
we are able to find the unique x = ¢(y) (implicit function
theorem), and then:

Assume that is locally reversal

y' = f((y),y)

and finally we could apply Picard-Lindelof to prove existence and
uniqueness, but...

[ 1) is unknown !j
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Approach to simulate DAE with guarantee

Based on Lohner two-step approach E’
ENSTA

Step 1- A priori enclosure of state and algebraic variables """

Solution

If we are able to find [X] such that

for each y € [y],3!x € [X] : g(x,y) = 0, then 3l on the
neighborhood of [X], and the solution of DAE 3! in [y] (Picard
with [X] as a parameter)
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Approach to simulate DAE with guarantee

Based on Lohner two-step approach E’
ENSTA

Step 1- A priori enclosure of state and algebraic variables """
Solution

If we are able to find [X] such that

for each y € [y],3!x € [X] : g(x,y) = 0, then 3l on the
neighborhood of [X], and the solution of DAE 3! in [y] (Picard
with [X] as a parameter)

A novel operator Picard-Krawczyk PK:

P([y], [x]) [7] :
If (’C([)N’]» [)N(])> C Int ([;(]> then 3! solution of DAE

» P a Picard-Lindelof for y’ € f([X], y)

» K a parametrized preconditioned Krawczyk operator for

g(x,y) =0,y € [y]
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Approach to simulate DAE with guarantee

Based on Lohner two-step approach E’
ENSTA

ParisTech

Step 2- Contraction of state and algebraic variables (at t + h)

Two contractors in a fixpoint:
» Contraction of [y;+1] (init [¥])
» [X;] as a parameter of function f(t,x,y)
= ODE (stiff + interval parameter)
= Radau IIA order 3 (fully Implicit Runge-Kutta, A-stable,
efficiency for stiff and interval parameters)
» Contraction of [x;4+1] (init [X;])
> [yi+1] as a parameter of function g(x,y)
= Constraint solving
= Krawczyk + forward/backward
(+ any other constraints, from physical context or Pantelides
algorithm)
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Approach to simulate DAE with guarantee

Based on Lohner two-step approach E’
ENSTA

ParisTech

How to control the stepsize of integration scheme 7

Classical method: Constrained by the Picard success and an
evaluation of the truncature error lower than threshold
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Approach to simulate DAE with guarantee

Based on Lohner two-step approach E’
ENSTA

ParisTech

How to control the stepsize of integration scheme 7

Classical method: Constrained by the Picard success and an
evaluation of the truncature error lower than threshold

No specific control w.r.t. the algebraic variable
If x leads to a large evaluation of truncature error: too late !
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Approach to simulate DAE with guarantee

Based on Lohner two-step approach E’
ENSTA

ParisTech

How to control the stepsize of integration scheme 7

Classical method: Constrained by the Picard success and an
evaluation of the truncature error lower than threshold

No specific control w.r.t. the algebraic variable

If x leads to a large evaluation of truncature error: too late !

Solution: force diameter of x grows slower than y

Empirical approach: to improve !
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Examples

A basic example E’

ENSTA
ParisTech

System in Hessenberg index-1 form

/
y=y+x+1 _ _

{ (y41)ex t2=0 y(0) = 1.0 and x(0) € [-2.0,2.0]

(consistency: x(0) = —1)

Simulation till t=4s (30 seconds of computation)

. Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 12



Examples

The classical example: Pendulum E’
ENSTA

ParisTech
'=u
"4

/

mu’ = —pA
mv =—qg\—g

m(u® +v?) —gg— PA=0

~Q T

(p,q,u,v)o =(1,0,0,0) et \g € [-0.1,0.1] (consistency: A =0)
Simulation till t=1s (2 minutes of computation)
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Discussion

Discussion E’

ENSTA

ParisTech

Promising first results
» Novel operator Picard-Krawczyk

v

Combination of algebraic contractor and integration scheme

v

All additive constraints can be considered (from index
reduction for example)

v

Initial consistency solved by Krawczyk (main issue in DAE
community)

But we need
» Higher order Runge-Kutta methods (Radau IlA order 5, Gauss
order 6, and more)
» Improvement of global algorithm (stepsize control, contraction
(hybrid Krawczyk), first estimation for [X]...)
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Discussion

€

ENSTA

ParisTech

Questions ?

if not several appendices are available...
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Appendix

Radau methods E’
ENSTA
ParisTech

Yn+1 :}/n"i_hz,?:l bik;, ki= f(t0+C,h y0+h2 la,J

Butcher tableau Radau A order 3
1/3 | 5/12 -1/12

1 | 3/4 1/4
| 3/4 1/
Butcher tableau Radau IlA order 5

2 V6| 1 _7v6 3 160v6 2 V6
5 10 45 360 225 1800 225 T 75
2, y6 | 3T 4 1606 1l 7v6 2 _ V6
5 T 10 225 18 45 60 225 75

1 s _ Vo 44 V6 1

9 6 9T 3 9

| 48 4, V6 1

9 9T 3 9
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Appendix

Parametric Krawczyk

Parametric preconditioned Krawczyk operator

K([7], [%]) = m([x]) — Cg(m([X]), m([7]))—
(Cg—i([?L ) = DX = m([x1)) -

€

ENSTA

ParisTech

Cg—i(m([?]), D] = m(71) (1)
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Appendix

Pendulum with Dymola E’
ENSTA

ParisTech

Our method: Dymola:

NV RN
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Appendix

Pantelides on pendulum E’
ENSTA

ParisTech

pPP+q>—1=0
pxu+qgxv=0
mx (> +v?) —g*xq>—Pxp=0
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Appendix

Pendulum to 1.6s, tol = 10718

28 minutes...

Aosbac vrsti e

€

ENSTA

ParisTech

Anebaicvarasie stse varbl
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Appendix

Frobenius theorem E’
ENSTA

ParisTech

Let X and Y be Banach spaces, and A C X, B C Y a pair of open sets. Let

F:Ax B— L(X,Y)

be a continuously differentiable function of the Cartesian product (which inherits a differentiable structure from its
inclusion into X X Y) into the space L(X,Y) of continuous linear transformations of X into Y. A differentiable
mapping u : A — B is a solution of the differential equation

v = Flx,) (1)

if u’(x) = F(x, u(x)) for all x € A. The equation (1) is completely integrable if for each (xg, yo) € A X B, there
is a neighborhood U of x0 such that (1) has a unique solution u(x) defined on U such that u(x0)=y0. The
conditions of the Frobenius theorem depend on whether the underlying field is R or C. If it is R, then assume F is
continuously differentiable. If it is C, then assume F is twice continuously differentiable. Then (1) is completely
integrable at each point of A X B if and only if

D1F(x,y) - (s1,%2) + DaF(x,y) - (F(x,y) - s1,%2) = D1F(x,y) - (52, 51) + D2F(x,y) - (F(x, ) - 52, 51) for all
s1,s2 € X. Here D1 (resp. D2) denotes the partial derivative with respect to the first (resp. second) variable; the
dot product denotes the action of the linear operator F(x, y) € L(X, Y), as well as the actions of the operators
D1F(x,y) € L(X, L(X,Y)) and D2F(x,y) € L(Y, L(X,Y)).

Dieudonné, J (1969). Foundations of modern analysis. Academic Press.
Chapter 10.9.
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