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Abstract

This paper is about using range-only measurements between multiple
Autonomous Underwater Vehicles (AUV) to maintain a prede�ned for-
mation. The AUVs have no a priori knowledge of each other's path or
decisions. All vehicles must maintain the same speed during the mission
and are not allowed to stop. Each vehicle must then adjust its position
using the available range-only data. We provide a guaranteed state estima-
tion of the targeted vehicle using interval analysis and a set-membership
approach. Simulation results are described and discussed.

1 Introduction And Background

Envision a scenario where a swarm of Autonomous Underwater Vehicles (AUV)
is exploring an area. Due to the large number of vehicles and because of the com-
munication medium (underwater acoustics), the vehicles can hardly exchange
their position with their neighbors to maintain a given formation. In this paper,
we propose to use range-only measurements to keep the formation. Using syn-
chronized clocks, all vehicles emit a unique ping at a given time. The one-way
acoustic time of �ight is used to determine the range between vehicles. One-
Way time of �ight has already been explored using stationary objects [3] and a
similar study has been done with communicating moving AUVs [1, 7].

As all the vehicles are similar and evolve at the same depth, the state of each
vehicle i will be represented with its position in a 2-D plane and its heading,
xi = [xi, yi, θi]

T
. For the mission purposes, the vehicles must keep a given speed

v and can only control their rotation speed ui ∈ U , where U is the set of all
possible rotation speeds. For the sake of simplicity, let the robot motion be
described by the following state equations

ẋi = vi · cos θi

ẏi = vi · sin θi
θ̇i = ui

(1.1)

Due to the lack of information about the vehicles' absolute position, we
propose to study the relative position and therefore a relative localization. Let
f be the evolution function of the AUV j's relative position x̃ij in the vehicle



(a) Representation of two vehicles of the swarm.(b) With range-only information at the �rst
step, X1 is a cylinder (projected here on the 2-D
space).

Figure 1.1: Relative Localization

i frame, �gure 1.1a. The ranging information between the two vehicles will be
represented as

yij = dij + εd =
√
x̃2ij + ỹ2ij + εd = g(x̃ij) (1.2)

The system can then be represented in the frequently used from,

Σ :

{
˙̃xij = f(x̃ij , uj , ui)

yij = g(x̃ij)
(1.3)

To solve the system Σ of equation (1.3), we propose to use set-membership
techniques and interval analysis [5].

2 Set-Membership Estimator

Measurements of distance come at discrete instants. Let us consider the system
in equation (1.3) at a discrete time domain using Euler's discretization:

Σ :

{
x̃k
ij = f̃(x̃k−1

ij , uk−1
j , uk−1

i )

yk
ij = g(x̃k

ij)
, k = 0, . . . , tfinal (2.1)

where x̃k
ij ∈ IR3 is the state vector at the discrete time k , yk

ij ∈ IR is the output

and f̃ is the Euler integral of f .
Let Xk be the associated domain set of the variable x̃k1 at the instant k.

As no prior information is available on x̃0, . . . , x̃tfinal , thus X0, . . . ,Xtfinal
are

taken as IR3. The measurement yk, with the noise value εd, is used to form the

1For simpli�cation purposes, the indexes ij will be omitted.



measurement set Yk. ui is known as the robot's own input, and we de�ne Uk is
the set of all possible ukj . The equation (2.1) then becomes{

Xk = f̃(Xk−1,Uk−1, u
k−1
i )

Yk = g(Xk)
(2.2)

At every instant k, the state set Xk is de�ned with equation (2.2), thus it
can be computed with

Xk = f̃(Xk−1,Uk−1, u
k−1
i ) ∩ g−1(Yk), k = 1, . . . , tfinal (2.3)

Let's take as an example the �rst two set X0 and X1. As no prior information
is available, X0 = X1 = IR3. Then applying equation (2.3) to X1 will contract
the space to a cylinder in IR³, see �gure 1.1b.

Reversibly, Xk−1 can be computed from the recently computed Xk using the
inverse of f̃ ,

Xk−1 = f̃−1(Xk,Uk−1, u
k−1
i ), k = 1, . . . , tfinal (2.4)

Applying both equation (2.3) and equation (2.4) to every set Xk is similar
to applying a non-causal state estimator [4].

3 Preliminary Results

A scenario of two vehicles is simulated, where, �rst, a vehicle i loiters around a
position and the vehicle j moves in a straight line.

Applying the algorithm on the data set provided by the simulation, �gure 3.1,
shows that it provides a relatively accurate position estimation of the targeted
vehicle. In this �gure, the red boxes represent a projection of the set Xk of the
(xOy) plane. One will notice that the set Xk is made of multiple boxes, this is
due to the bisection algorithm [5, 6].

As the vehicle i has a relatively accurate position of the position of the
vehicle j, it can now maintain the formation by going to a desired position
knowing the set Xk where the other vehicle is. A strategy based behavior [2]
can be implemented to keep the formation as this algorithm is symmetrical. For
example, when j realizes that it is too far from i and knows that the latter will
not be able to maintain the formation because of the speed limitation, it can
loiter waiting for i to catch up.

4 Conclusion And Future Work

In this paper, a relative positioning based only on range information has been
developed. Even though the system is non-linear and non observable, we showed
that the set-membership approach can produce a relatively accurate relative
position estimation based only on ranging measurements. The resulting position
estimation can be enough to maintain a given formation between the vehicles.
Future work will consist of simulating a swarm of AUVs all running the same
algorithm. A real-life experiment will also conducted to provide realistic data
to be studied as the modeling used for simulation is not as accurate.



(a) The black line represents the trajectory of j
in i's frame.

(b) Zooming around the real position (repre-
sented with the yellow ellipse) shows that it is
closely surrounded by the computed set Xtfinal .

Figure 3.1: Set-Membership Inversion results.
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