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Introduction

One of the main goals of interval analysis is to determine the range
of a given continuous function over a given (multidimensional) inter-
val. This talk is devoted to some particular functions important in
statistics.

One-dimensional data

First we consider the case of one-dimensional data. We assume that
there is a dataset x = (x1, . . . , xn) (a random sample from some
distribution, say) and a continuous function (statistic) S(x). The
dataset x is unobservable; what is observable is a collection of intervals
x = (x1, . . . ,xn) such that we are guaranteed that x ∈ x a.s. If we
do not make any stronger assumptions on the distribution of (x,x),
then the maximum information we can infer about S(x) from the ob-
servable data x is the pair of bounds S = min{S(ξ) : ξ ∈ x} and
S = max{S(ξ) : ξ ∈ x}.

Only a few statistics can be evaluated by the interval arithmetic,
such as the sample mean or variance n−1

∑
i(xi − µ)2, when the true

mean µ is known. More often, the arithmetical expressions suffer from
the dependency problem.



One of the best understood statistics is the sample variance σ2 =
(n − 1)−1

∑n
i=1(xi − n−1

∑n
j=1 xj)

2. It is directly seen that σ2 can be
computed in weakly polynomial time; however, there even exists a
strongly polynomial method. On the other hand, computation of σ2

is NP-hard and inapproximable with an arbitrary absolute error. It
is an open problem whether it is efficiently approximable with some
“reasonable” relative error. A good news is that σ2 can be computed
in pseudopolynomial time. Furthermore, many special cases solvable
in polynomial time are known. We will study the algorithm by Ferson
et al. [5], which works in time O(2ωnn2), where ωn is the size of the
largest clique of the undirected graph G(V,E) with V = {1, . . . , n} and
{i, j} ∈ E iff [xC

i ± n−1x∆
i ] ∩ [xC

j ± n−1x∆
j ] ̸= ∅. In general, ωn can be

large, but in many reasonable and natural stochastic setups it seems
that ωn = O(log n) on average, making the algorithm practically very
useful. Moreover, it seems that var(ωn) = O(1), showing that hard
instances occur very rarely.

We will deal with other statistics of one-dimensional data, such
as higher moments or the coefficient of variation, from a similar per-
spective. We will also mention statistics important in testing hy-
potheses. We will also deal with simultaneous regions for dependent
statistics, such as the joint region {(n−1

∑n
i=1 ξi, (n − 1)−1

∑n
i=1[ξi −

n−1
∑n

j=1 ξj]
2) ∈ R2 : ξ ∈ x} for sample mean and variance.

Linear regression

In the multivariate setup we discuss the linear regression model y =
Xβ + ε, where the data (X, y) are unobservable and we can observe
only intervals X,y such that X ∈ X and y ∈ y a.s. Here, the most
important statistics are estimators of the regression coefficients β and
goodness-of-fit measures. We will study minimum-norm estimators
based on Lp-norms and their associated loss functions, such as Ordi-
nary Least Squares, Generalized Least Squares, Least Absolute De-
viations and Chebyshev Approximation. We show that the orthant
decomposition of the parameter space based on Oettli-Prager Theo-
rem yields useful algorithms, which are exponential in the number of



regression parameters, but not in the number of observations.
We will also show how the orthant decomposition method applies to

a form of the Errors-In-Variables model. In particular, we assume that
the observations of both X and y are contaminated by random errors
with a bounded support with a common radius. Then, the orthant
decomposition method allows us to construct a consistent estimator of
the regression parameters and the error radius.

***

The talk summarizes some well-known results, some new results as
well as research challenges on the border between interval theory and
statistics.
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[1] M. Černý, J. Antoch and M. Hlad́ık, On the possibilistic
approach to linear regression models involving uncertain, indeter-
minate or interval data, Information Sciences 244: 26–47, 2013.
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