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828, boulevard des maréchaux, 91000, Palaiseau, France

{alexandre,chapoutot}@ensta.fr

Keywords: differential algebraic equations, guaranteed integration.

Introduction

Our recent results on validated simulation of ordinary differential equa-
tions (ODE) with implicit Runge-Kutta schemes [1] lead us to go up
in complexity of kind of differential equations. Indeed, we are able to
simulate ODE with interval parameters which is one of the requirement
for our solver of differential algebraic equation (DAE). We currently
focus on the DAE in Hessenberg index 1 form, that is

ẏ = f(t,x,y), (1a)

0 = g(t,x,y) . (1b)

In Equation (1) y is the state variable and x is the algebraic variable
(without an expression for its derivative) and ẏ stands for the time
derivative of y. This kind of DAE is common and used by a majority
of simulation tools as Simulink and Modelica-like software.

A simulation procedure for ODE consists in two phases repeated at
each simulation step k, starting from a given guaranteed initial value
[yk] at time instant tk then compute an enclosure [yk+1] 3 y(tk+1) in
function of [yk] 3 y(tk) with the step-size hk = tk+1 − tk.
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The major issue in the validated integration of DAE is the con-
sistency of the initial values [4]. The additional constraints, Equa-
tion (1b), to be satisfied by the differential and the algebraic values are
generally obtained by the Pantelides algorithm [3]. One attempt was
made in order to solve DAE with guarantee by using an approximation
of the solution and by adding a “post” consistency verification [2]. This
approach produced mitigated results, and we propose a new approach
in the following.

Main idea

Our method is based on the ability of the interval representation to en-
close a set of solutions and use two contractors to reduce this enclosure
around the solution.

An enclosure

Firstly, we do need the guaranteed enclosures of the solution of the
differential equations (Equation (1a)), denoted by [ỹk], and of the so-
lution of the algebraic constraints (Equation (1b)), denoted by [x̃k],
at each step k of integration process. These enclosures are obtained
with a novel operator mixing a classical Picard-Lindelöf operator with
[x̃k] as a ∀-parameter and a parametric Krawczyk operator with [ỹk]
as a ∀-parameter. The goal is then to find a post fixpoint simultane-
ously satisfying [ỹk] and [x̃k]. This operator prove the existence and
the unicity of the solution for the dynamical part for all values of the
algebraic variable and by the way the fulfillment of the constraints,
whatever the state variable.

Two contractors

After obtaining these enclosures, we have to reduce [ỹk] around the
solution y(tk+1). It is done with the help of our powerful validated
implicit Runge-Kutta schemes [1]. Essentially, we used a validated
Radau quadrature IIA, known for its efficiency and stability on DAE.



This scheme is able to manage with an interval parameters, such as
[x̃k]. After that, the second contractor is used to reduce [x̃k] around
the solution x(tk+1). We combine for this purpose the Krawczyk used
in the first step and a forward/backward contractor.

Main results

We solve the pendulum problem in index 1 form whose dynamics is
given by

f :


ṗ = u

q̇ = v

mu̇ = −pλ
mv̇ = −qλ− g

associated with constraint

g : 0 = m(u2 + v2)− gq − `2λ .

In functions f and g, m is the mass of the pendulum, ` is the length
of the rod, u and v are Cartesian coordinates of the mass while p and
q stand for the angular speed, g is the gravity force and λ stands for
the Lagrange multiplier.

The simulation time is set to 1.6 seconds and with the initial
conditions given by p(0) = 1, q(0) = 0, u(0) = 0, v(0) = 0, and
λ(0) ∈ [−0.01, 0.01]. The consistency is verified with Krawczyk which
gives λ(0) ∈ [−0, 0]. The trajectory computes by our method is given
in Figure 1. This simulation takes about ten minutes with a maximal
diameter of 0.02 for the final solution.

Conclusion

We presented in this abstract the first solid approach for the validated
integration of the DAE under the Hessenberg-index 1 form. The first
results are already interesting even if many issues have been opened to
obtain an efficient tool.



Figure 1: Trajectory of the pendulum.
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