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Simultaneous
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Embedding with
Fixed Edges

Quasiplanarity

» QuaSEFE Problem:

» Input: Set of quasiplanar graphs with shared vertex set

» Qutput: Simultaneous quasiplanar drawings for all
graphs with fixed edges
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» counterexamples for SEFE

> three paths [Brass et al. '06]

> two outerplanar graphs [Frati "06]
> SEFE testable in O(n?) time for two biconnected planar

graphs with connected intersection [Blasius & Rutter '16]
» Variants

» no fixed mapping between vertices [Brass et al. '06]

> geometric simultaneous embedding (GSE)
[Angelini et al. '11, Di Giacomo et al. "15]
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Related Work - SEFE and Beyond Planarity

» quasiplanar GSE

> a tree and a cycle [Didimo et al. '12]
> a tree and an outerpillar [Di Giacomo et al. '15
> not every two quasiplanar graphs [Di Giacomo et al. '15

» simultaneous RAC drawings
[Argyriou et al. '13, Bekos et al. '16,
Evans et al. '16, Grilli 18]
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Our Results

» always positive instances for QuaSEFE
» two planar graphs and a tree
» a 1-planar graph and a planar graph

» planar graphs with restrictions on their
intersection graphs

» counterexamples for QuaSEFE in two special settings
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» 1. Decompose the 1-planar graph into a planar graph G;
and a forest 7> [Ackerman '14]

> 2. Apply the previous result (G; and T, are planar)
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» Let Gi, G> and G3 planar graphs on V

» Theorem: If <G1 \ Gs, Go \ G3>
admits a SEFE, (G, G;, G3)

admits a QuaSEFE.
a » Corollary: H; =0
= QuaSEFE

v » Corollary: H, , is forest of
paths = QuaSEFE
» Theorem: If H is a forest of

paths, (G, G,, G3) admits a
QuaSEFE.
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» Sunflower Instance: Planar Graphs Gy, ..., Gi s.t. each edge
is either in exactly one G; or in all G; (i.e. in H:=()G;)

» Deciding if SEFE exists is NP-hard [Angelini et al. "15]
for k > 3 Schaefer "13]

» Corollary: A sunflower instance with
k = 3 planar graphs admits a QuaSEFE.

» Theorem: For any k, a sunflower instance with k planar
graphs admits a QuaSEFE.

» 1. Draw H planar

» 2. Draw each G; \ H planar
» each G; is drawn with thickness 2
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