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QuaSEFE
Simultaneous
(Graph)
Embedding with
Fixed Edges

Quasiplanarity

QuaSEFE Problem:

Input: Set of quasiplanar graphs with shared vertex set

Output: Simultaneous quasiplanar drawings for all
graphs with fixed edges
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two caterpillars (in polynomial area) [Brass et al. ’06]

counterexamples for SEFE

three paths [Brass et al. ’06]

Variants
no fixed mapping between vertices [Brass et al. ’06]

a planar graph and a tree [Frati ’06]

two outerplanar graphs [Frati ’06]

geometric simultaneous embedding (GSE)
[Angelini et al. ’11, Di Giacomo et al. ’15]

SEFE testable in O(n2) time for two biconnected planar
graphs with connected intersection [Bläsius & Rutter ’16]
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Related Work - SEFE and Beyond Planarity

quasiplanar GSE

simultaneous RAC drawings
[Argyriou et al. ’13, Bekos et al. ’16,

Evans et al. ’16, Grilli ’18]

a tree and a cycle [Didimo et al. ’12]

a tree and an outerpillar [Di Giacomo et al. ’15]

not every two quasiplanar graphs [Di Giacomo et al. ’15]
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Our Results

always positive instances for QuaSEFE

two planar graphs and a tree

a 1-planar graph and a planar graph

planar graphs with restrictions on their
intersection graphs

counterexamples for QuaSEFE in two special settings
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A 1-Planar Graph and a Planar Graph X

1. Decompose the 1-planar graph into a planar graph G1

and a forest T2 [Ackerman ’14]

2. Apply the previous result (G1 and T2 are planar)
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Triples of Planar Graphs X

Let G1, G2 and G3 planar graphs on V

Theorem: If 〈G1 \ G3, G2 \ G3〉
admits a SEFE, 〈G1, G2, G3〉
admits a QuaSEFE.

H1 H2

H3

H1,2

H2,3

H

Corollary: H1 = ∅
⇒ QuaSEFE

H1,3

Corollary: H1,2 is forest of
paths ⇒ QuaSEFE

Theorem: If H is a forest of
paths, 〈G1, G2, G3〉 admits a
QuaSEFE.
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Sunflower Instances X

Sunflower Instance: Planar Graphs G1, . . . , Gk s.t. each edge
is either in exactly one Gi or in all Gi (i.e. in H :=

⋂
Gi )

Deciding if SEFE exists is NP-hard
for k ≥ 3

[Angelini et al. ’15]
[Schaefer ’13]

Theorem: For any k, a sunflower instance with k planar
graphs admits a QuaSEFE.

1. Draw H planar

2. Draw each Gi \ H planar

each Gi is drawn with thickness 2

Corollary: A sunflower instance with
k = 3 planar graphs admits a QuaSEFE.
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Do the following always admit a QuaSEFE?

two 1-planar graphs

a quasiplanar graph and a matching

three outerplanar graphs

four paths

What is the computational complexity of QuaSEFE?

Extend to other beyond planar graph classes such as
k-planar graphs.

Main difficulty: find a similarly
catchy name for the problem Thank you for

your att
ention!
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