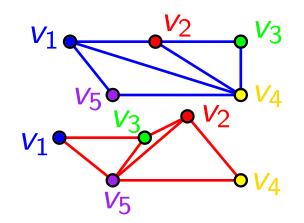
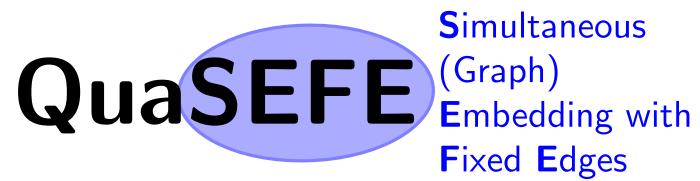
Patrizio Angelini, Henry Förster, Michael Hoffmann, Michael Kaufmann, Stephen Kobourov, Giuseppe Liotta, Maurizio Patrignani

> 27th International Symposium on Graph Drawing and Network Visualization 2019

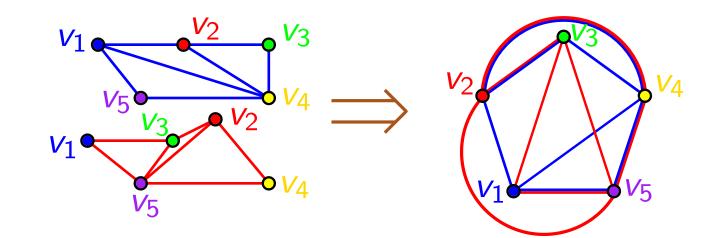
QuaSEFE

Input: Set of planar graphs with shared vertex set



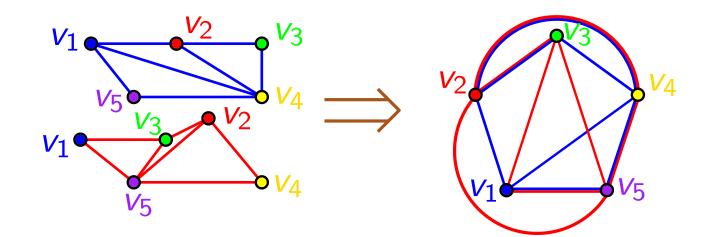


- Input: Set of planar graphs with shared vertex set
- Output: Planar drawings for all graphs such that



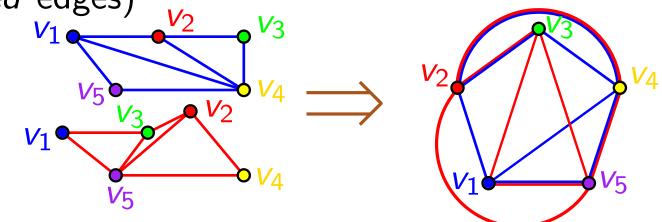
QuaSEFE Simultaneous (Graph) Embedding with Fixed Edges

- Input: Set of planar graphs with shared vertex set
- Output: Planar drawings for all graphs such that
 - vertices have the same position in all drawings (*simultaneous* drawings)



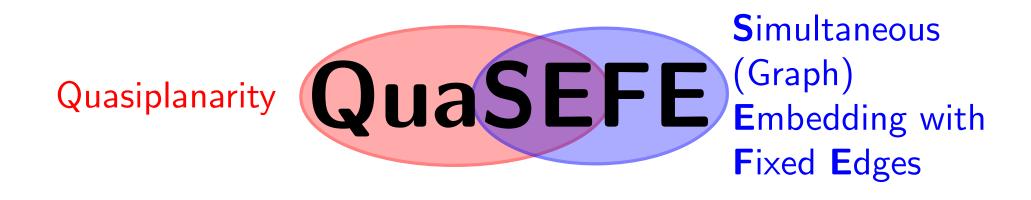
QuaSEFE Simultaneous (Graph) Embedding with Fixed Edges

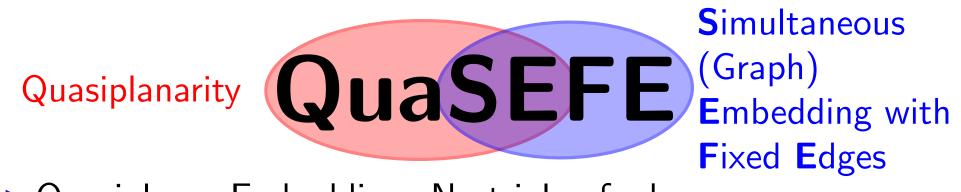
- Input: Set of planar graphs with shared vertex set
- Output: Planar drawings for all graphs such that
 - vertices have the same position in all drawings (*simultaneous* drawings)
 - edges have the same representation in all drawings (fixed edges)



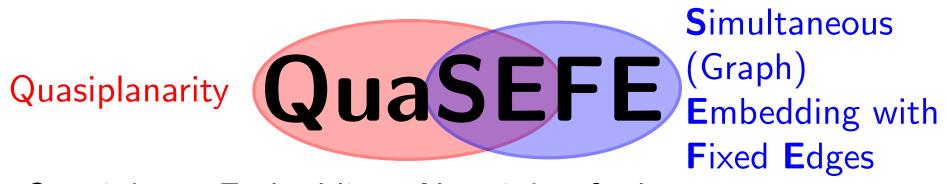
QuaSEFE Simultaneous (Graph) Embedding with Fixed Edges



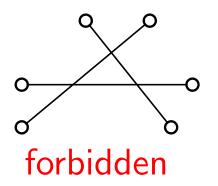




Quasiplanar Embedding: No triple of edges crosses pairwise



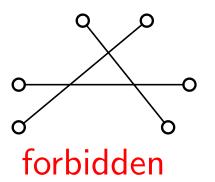
Quasiplanar Embedding: No triple of edges crosses pairwise

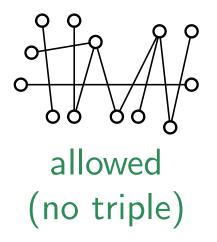


Quasiplanarity QuaSEFE

Simultaneous (Graph) Embedding with Fixed Edges

Quasiplanar Embedding: No triple of edges crosses pairwise

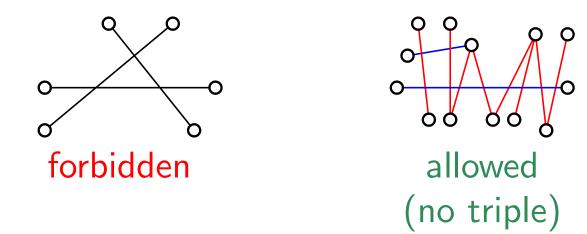




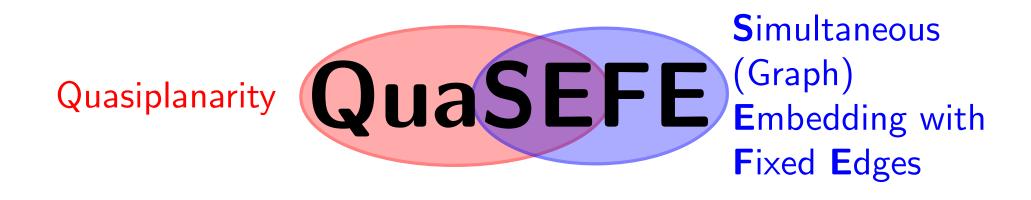
Quasiplanarity QuaSEFE

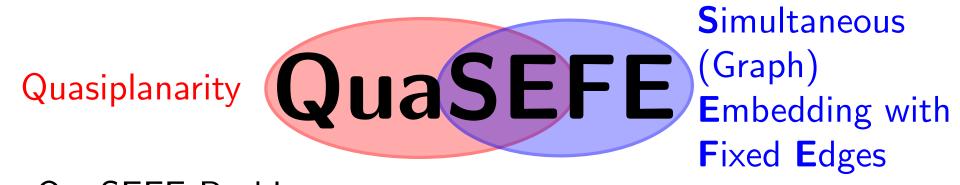
Simultaneous (Graph) Embedding with Fixed Edges

Quasiplanar Embedding: No triple of edges crosses pairwise

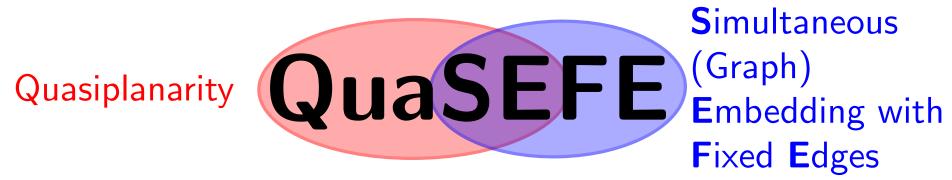


Thickness two drawings (i.e. two-edge colorable drawings) are quasiplanar



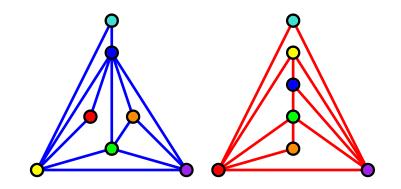


QuaSEFE Problem:



QuaSEFE Problem:

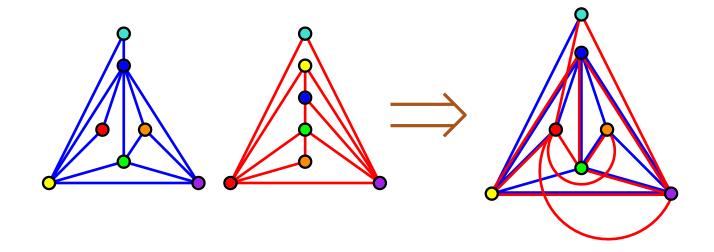
Input: Set of quasiplanar graphs with shared vertex set



Quasiplanarity Quaseful Contraction of the second s

QuaSEFE Problem:

- Input: Set of quasiplanar graphs with shared vertex set
- Output: Simultaneous quasiplanar drawings for all graphs with fixed edges



always positive instances for SEFE

always positive instances for SEFE

two caterpillars (in polynomial area) [Brass et al. '06]

always positive instances for SEFE

- two caterpillars (in polynomial area) [Brass et al. '06]
- a planar graph and a tree

```
[Frati '06]
```

always positive instances for SEFE

- two caterpillars (in polynomial area) [Brass et al. '06]
- a planar graph and a tree
- counterexamples for SEFE

```
Brass et al. '06]
[Frati '06]
```

always positive instances for SEFE

- two caterpillars (in polynomial area) [Brass et al. '06]
- a planar graph and a tree
- counterexamples for SEFE
 - three paths

[Frati '06]

[Brass et al. '06]

always positive instances for SEFE

- ▶ two caterpillars (in polynomial area) [Brass et al. '06]
- a planar graph and a tree
- counterexamples for SEFE
 - three paths
 - two outerplanar graphs

[Frati '06]

[Brass et al. '06] [Frati '06]

always positive instances for SEFE

two caterpillars (in polynomial area)
[Brass et al. '06]

[Frati '06]

[Brass et al. '06]

- a planar graph and a tree
- counterexamples for SEFE
 - three paths
 - two outerplanar graphs
- [Frati '06] ▶ SEFE testable in $\mathcal{O}(n^2)$ time for two biconnected planar graphs with connected intersection [Bläsius & Rutter '16]

always positive instances for SEFE

two caterpillars (in polynomial area) [Brass et al. '06]

[Frati '06]

[Frati '06]

[Brass et al. '06]

- a planar graph and a tree
- counterexamples for SEFE
 - three paths
 - two outerplanar graphs
- SEFE testable in O(n²) time for two biconnected planar graphs with connected intersection [Bläsius & Rutter '16]
- Variants

always positive instances for SEFE

- two caterpillars (in polynomial area) [Brass et al. '06]
- a planar graph and a tree
- counterexamples for SEFE
 - three paths
 - two outerplanar graphs
- SEFE testable in O(n²) time for two biconnected planar graphs with connected intersection [Bläsius & Rutter '16]
- Variants
 - no fixed mapping between vertices [Brass et al. '06]

[Frati '06]

[Brass et al. '06] [Frati '06]

always positive instances for SEFE

two caterpillars (in polynomial area) [Brass et al. '06]

[Frati '06]

[Frati '06]

- a planar graph and a tree
- counterexamples for SEFE
 - three paths [Brass et al. '06]
 - two outerplanar graphs
- SEFE testable in O(n²) time for two biconnected planar graphs with connected intersection [Bläsius & Rutter '16]
- Variants
 - no fixed mapping between vertices [Brass et al. '06]
 - geometric simultaneous embedding (GSE) [Angelini et al. '11, Di Giacomo et al. '15]

quasiplanar GSE

- quasiplanar GSE
 - a tree and a cycle

[Didimo et al. '12]

- quasiplanar GSE
 - ► a tree and a cycle
 - a tree and an outerpillar

[Didimo et al. '12] [Di Giacomo et al. '15]

quasiplanar GSE

- ► a tree and a cycle
- a tree and an outerpillar

- [Didimo et al. '12]
- [Di Giacomo et al. '15]
- not every two quasiplanar graphs [Di Giacomo et al. '15]

quasiplanar GSE

- ► a tree and a cycle [Didimo et al. '12]
- ► a tree and an outerpillar [Di Giacomo et al. '15]
- ▶ not every two quasiplanar graphs [Di Giacomo et al. '15]
- simultaneous RAC drawings
 - [Argyriou et al. '13, Bekos et al. '16, Evans et al. '16, Grilli '18]

Our Results

always positive instances for QuaSEFE

Our Results

always positive instances for QuaSEFE

two planar graphs and a tree

Our Results

always positive instances for QuaSEFE

- two planar graphs and a tree
- ► a 1-planar graph and a planar graph

Our Results

always positive instances for QuaSEFE

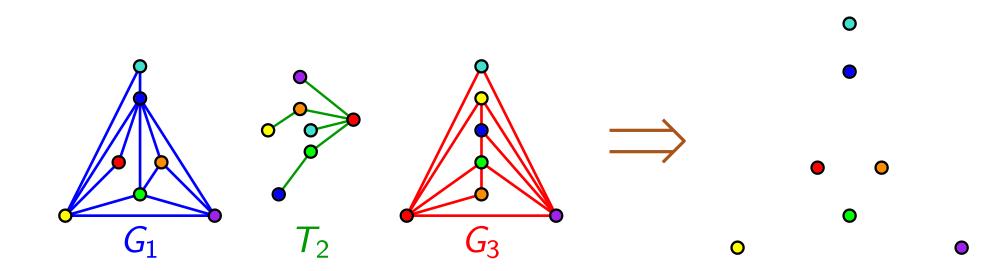
- two planar graphs and a tree
- ► a 1-planar graph and a planar graph
- planar graphs with restrictions on their intersection graphs

Our Results

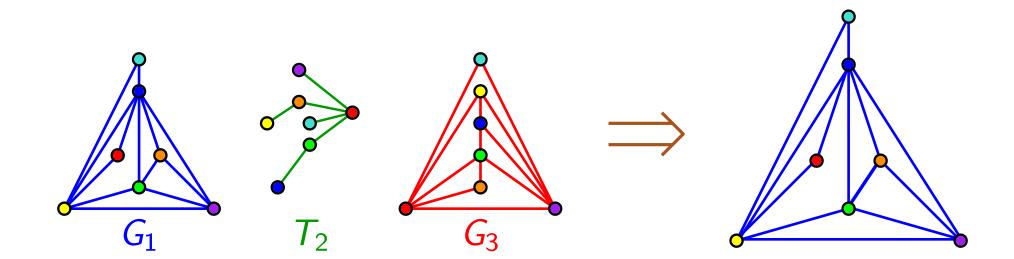
always positive instances for QuaSEFE

- two planar graphs and a tree
- a 1-planar graph and a planar graph
- planar graphs with restrictions on their intersection graphs
- counterexamples for QuaSEFE in two special settings

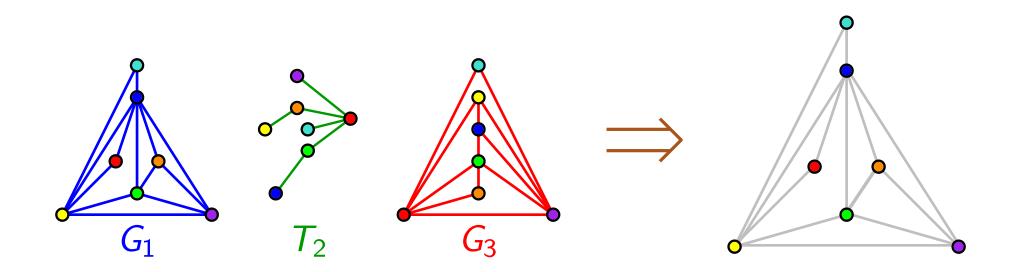
▶ 1. Draw G_1 planar



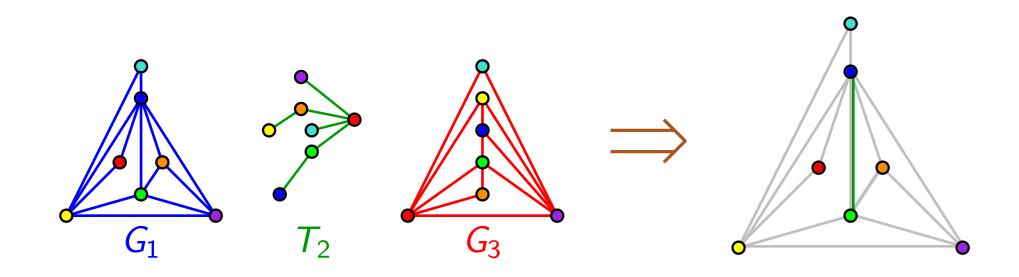
▶ 1. Draw G_1 planar



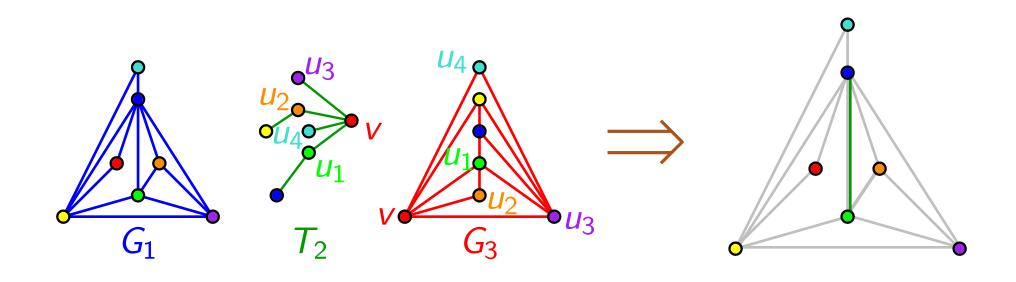
- ▶ 1. Draw G_1 planar
- ▶ 2. Draw T_2 planar



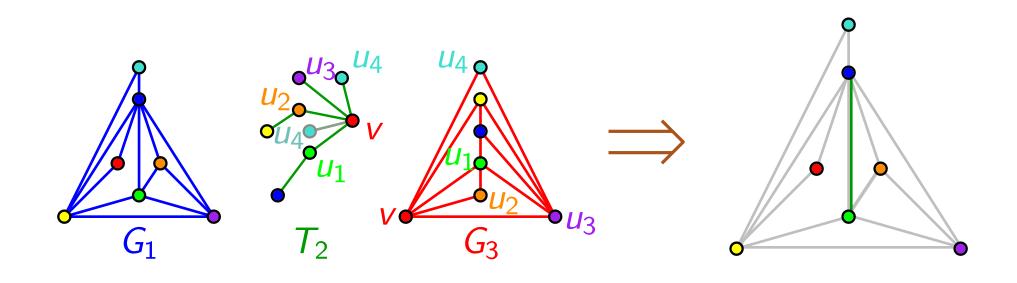
- ▶ 1. Draw G_1 planar
- ▶ 2. Draw T_2 planar
 - ▶ some edges fixed by G_1



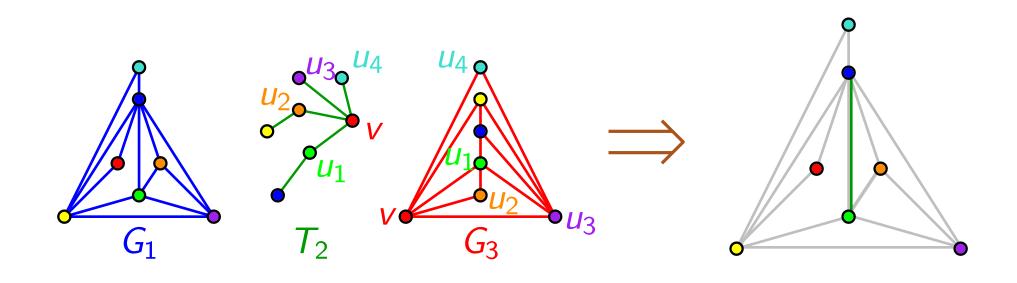
- ▶ 1. Draw G_1 planar
- ► 2. Draw T₂ planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$



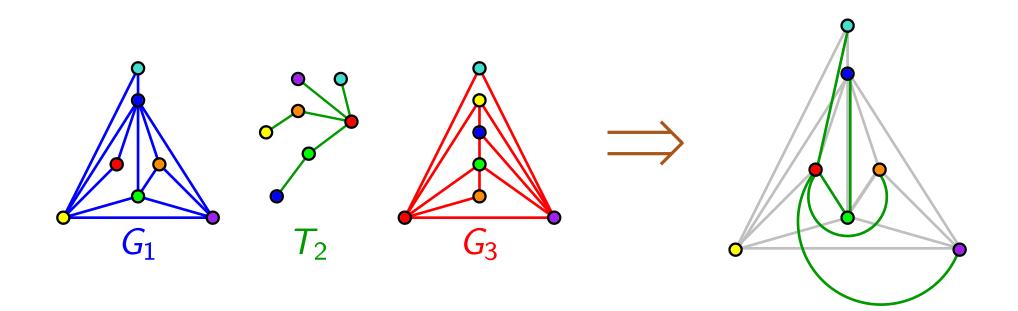
- ▶ 1. Draw G_1 planar
- ▶ 2. Draw T_2 planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$



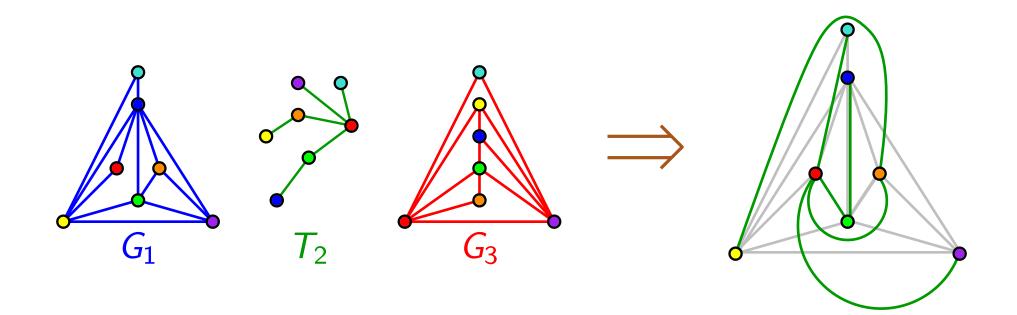
- ▶ 1. Draw G_1 planar
- ► 2. Draw T₂ planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$



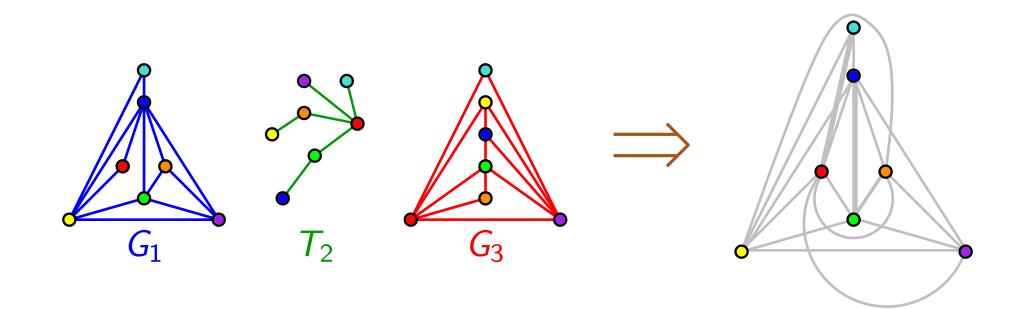
- ▶ 1. Draw G_1 planar
- ► 2. Draw T₂ planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$



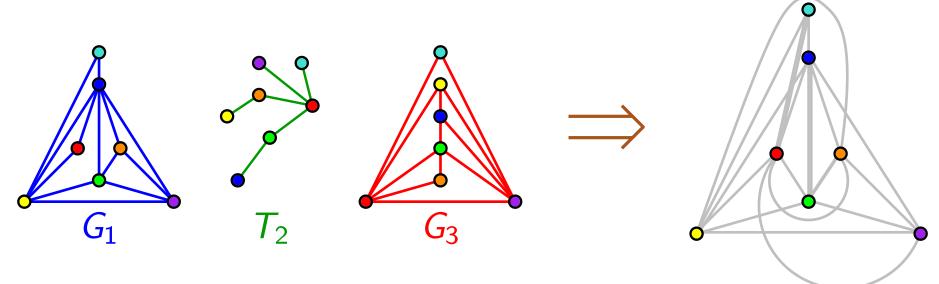
- ▶ 1. Draw G₁ planar
- ► 2. Draw T₂ planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar



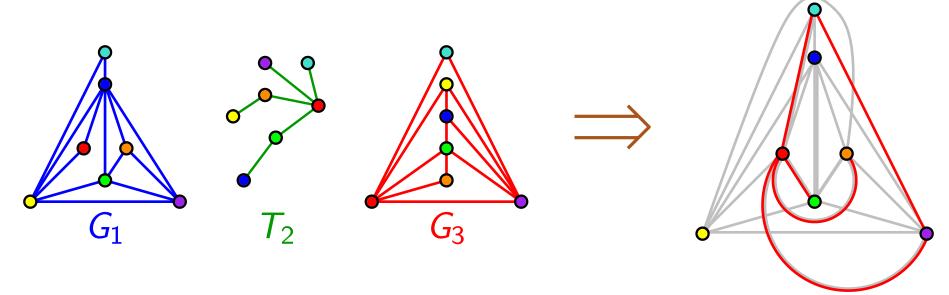
- ▶ 1. Draw G₁ planar
- ▶ 2. Draw T_2 planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
- ► 3. Draw G₃ quasiplanar



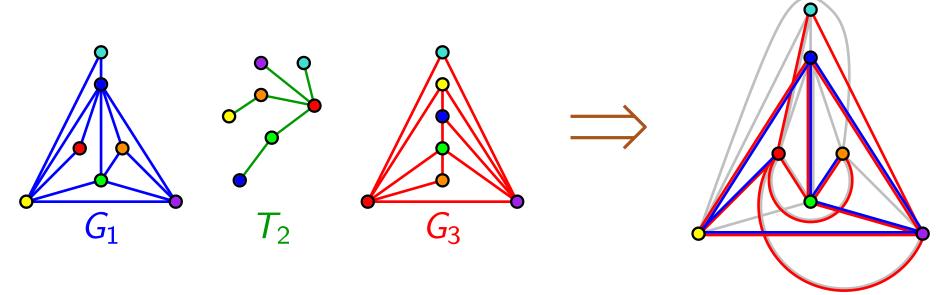
- ▶ 1. Draw G₁ planar
- ► 2. Draw T₂ planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
- ► 3. Draw G₃ quasiplanar
 - ► $G_3 \setminus G_1$ planar



- ▶ 1. Draw G₁ planar
- ► 2. Draw T₂ planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
- ► 3. Draw G₃ quasiplanar
 - ► $G_3 \setminus G_1$ planar



- ▶ 1. Draw G₁ planar
- ► 2. Draw T₂ planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
- ► 3. Draw G₃ quasiplanar
 - ► $G_3 \setminus G_1$ planar



- ▶ 1. Draw G₁ planar
- ► 2. Draw T₂ planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
- ► 3. Draw G₃ quasiplanar
 - ▶ $G_3 \setminus G_1$ planar
 - thickness $2 \Rightarrow$ quasiplanar

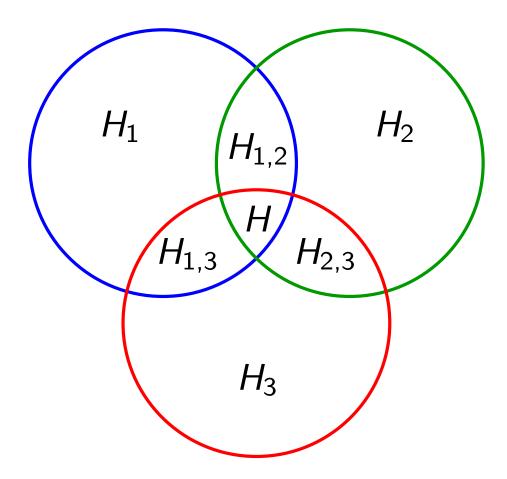
- ▶ 1. Draw G₁ planar
- ► 2. Draw T₂ planar
 - ▶ some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
- ► 3. Draw G₃ quasiplanar
 - ▶ $G_3 \setminus G_1$ planar
 - thickness $2 \Rightarrow$ quasiplanar

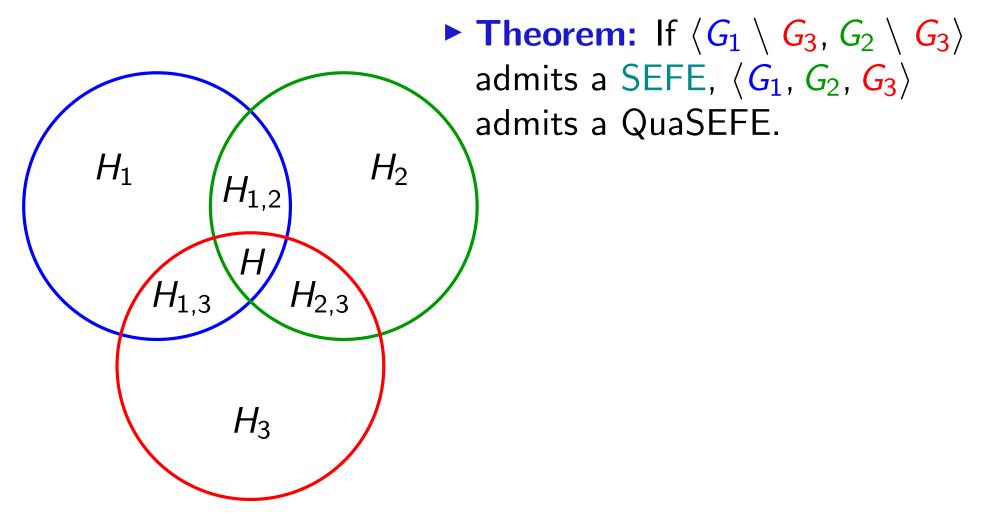
A 1-Planar Graph and a Planar Graph \checkmark

▶ 1. Decompose the 1-planar graph into a planar graph G_1 and a forest T_2 [Ackerman '14]

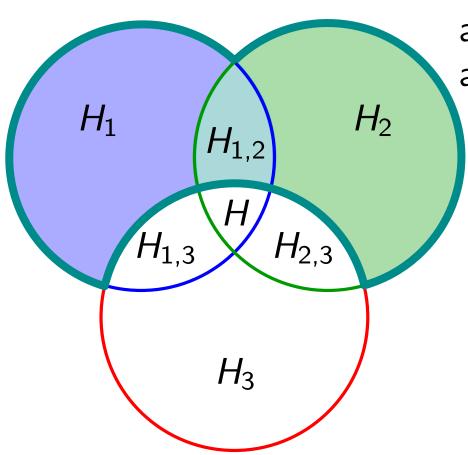
A 1-Planar Graph and a Planar Graph \checkmark

- ▶ 1. Decompose the 1-planar graph into a planar graph G_1 and a forest T_2 [Ackerman '14]
- ▶ 2. Apply the previous result (G_1 and T_2 are planar)

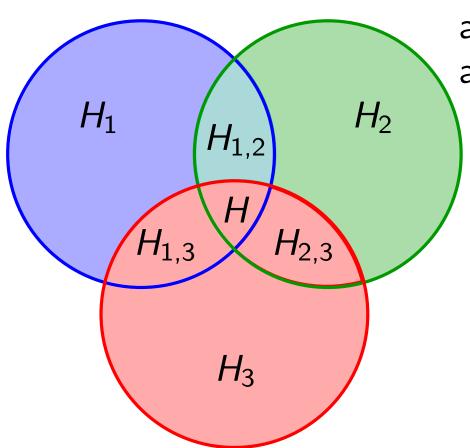




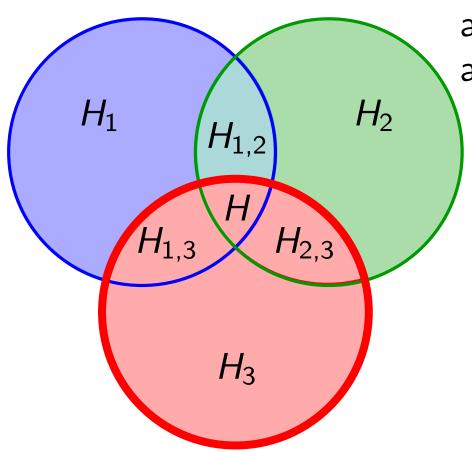
• Let G_1 , G_2 and G_3 planar graphs on V



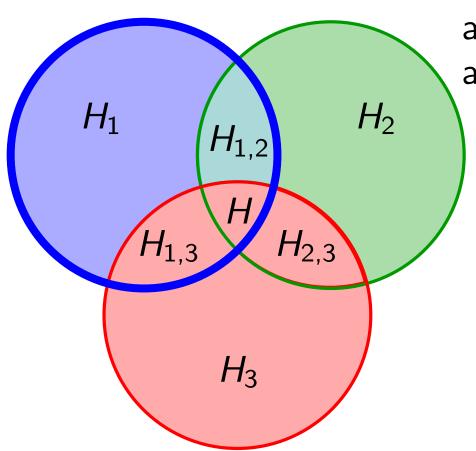
• Let G_1 , G_2 and G_3 planar graphs on V

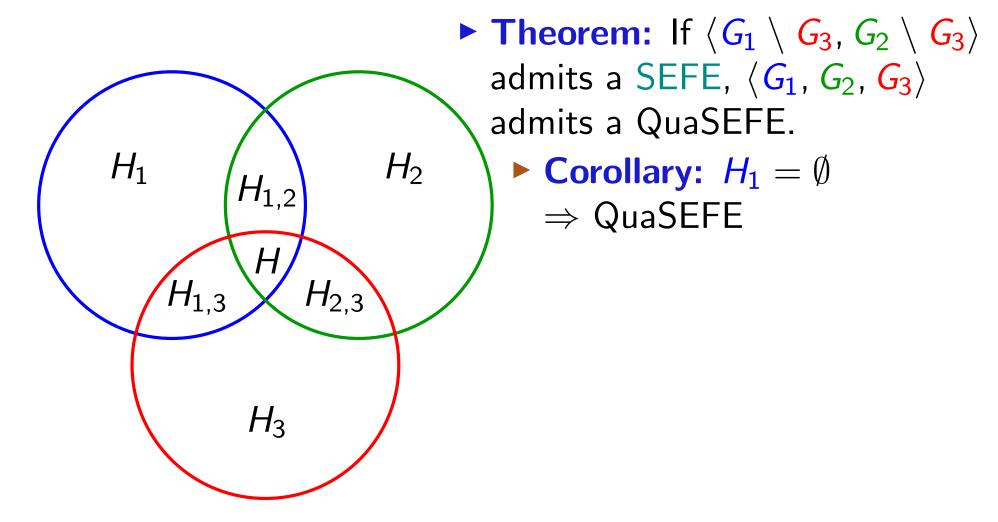


• Let G_1 , G_2 and G_3 planar graphs on V

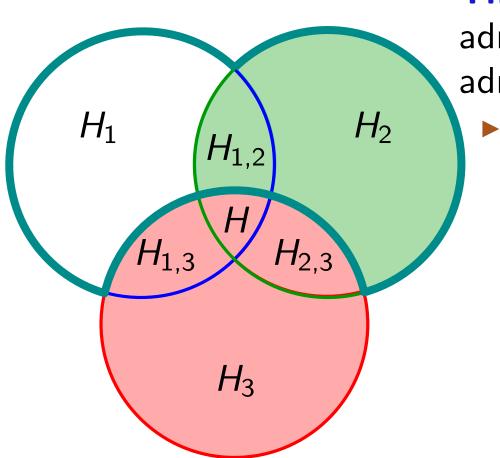


• Let G_1 , G_2 and G_3 planar graphs on V





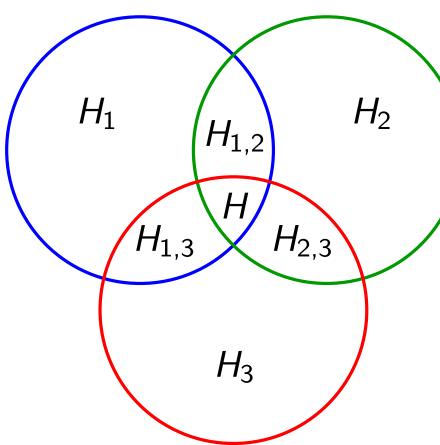
• Let G_1 , G_2 and G_3 planar graphs on V



• Theorem: If $\langle G_1 \setminus G_3, G_2 \setminus G_3 \rangle$ admits a SEFE, $\langle G_1, G_2, G_3 \rangle$ admits a QuaSEFE.

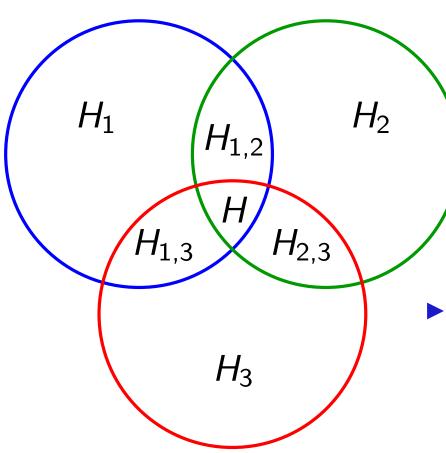
• **Corollary:** $H_1 = \emptyset$ \Rightarrow QuaSEFE

• Let G_1 , G_2 and G_3 planar graphs on V



- Corollary: $H_1 = \emptyset$ \Rightarrow QuaSEFE
- Corollary: $H_{1,2}$ is forest of paths \Rightarrow QuaSEFE

• Let G_1 , G_2 and G_3 planar graphs on V



- Corollary: $H_1 = \emptyset$ \Rightarrow QuaSEFE
 - Corollary: $H_{1,2}$ is forest of paths \Rightarrow QuaSEFE
- Theorem: If H is a forest of paths, $\langle G_1, G_2, G_3 \rangle$ admits a QuaSEFE.

Sunflower Instance: Planar Graphs G₁,..., G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in H := ∩ G_i)

- Sunflower Instance: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - ► Deciding if SEFE exists is NP-hard [Angelini et al. '15] for k ≥ 3 [Schaefer '13]

- Sunflower Instance: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - Deciding if SEFE exists is NP-hard [Angelini et al. '15] for $k \ge 3$ [Schaefer '13]
 - Corollary: A sunflower instance with k = 3 planar graphs admits a QuaSEFE.

- Sunflower Instance: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - Deciding if SEFE exists is NP-hard [Angelini et al. '15] for $k \ge 3$ [Schaefer '13]
 - Corollary: A sunflower instance with k = 3 planar graphs admits a QuaSEFE.
- Theorem: For any k, a sunflower instance with k planar graphs admits a QuaSEFE.

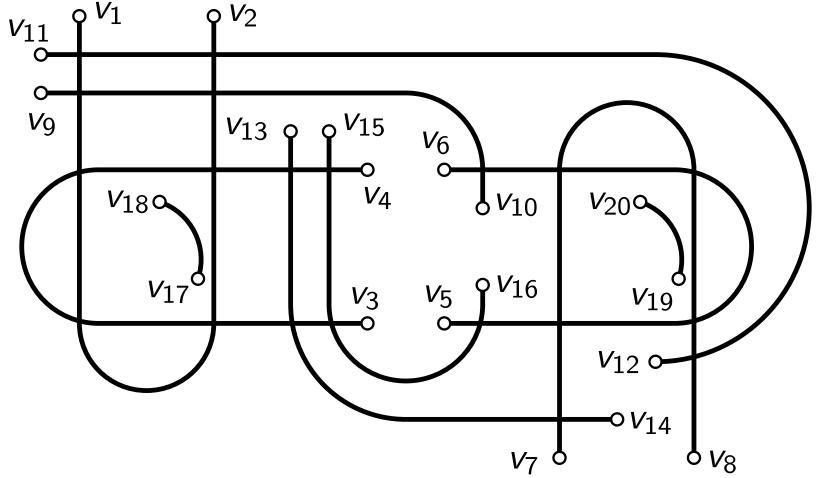
- Sunflower Instance: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - Deciding if SEFE exists is NP-hard [Angelini et al. '15] for $k \ge 3$ [Schaefer '13]
 - Corollary: A sunflower instance with k = 3 planar graphs admits a QuaSEFE.
- Theorem: For any k, a sunflower instance with k planar graphs admits a QuaSEFE.
 - ▶ 1. Draw *H* planar

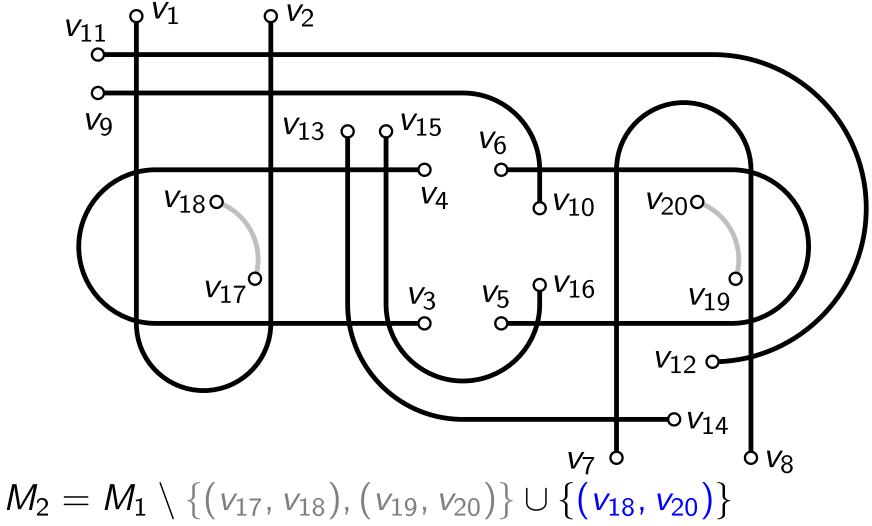
Sunflower Instances \checkmark

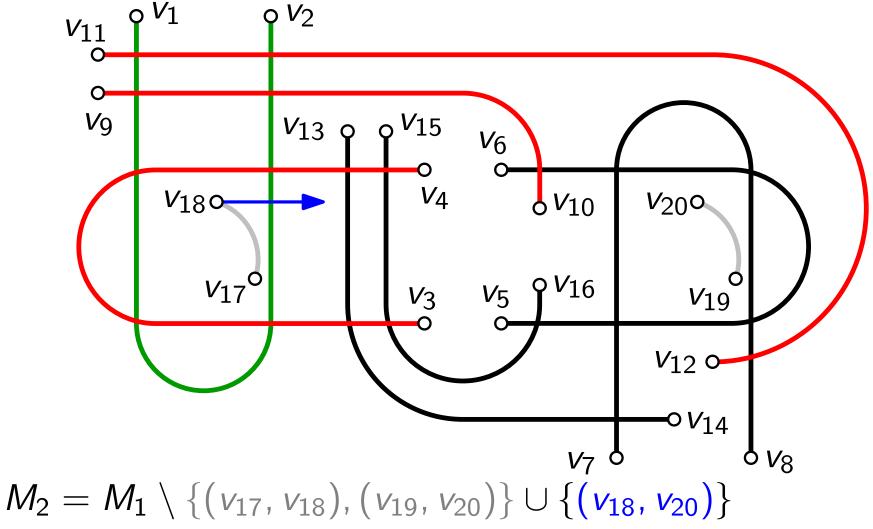
- Sunflower Instance: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - Deciding if SEFE exists is NP-hard [Angelini et al. '15] for $k \ge 3$ [Schaefer '13]
 - Corollary: A sunflower instance with k = 3 planar graphs admits a QuaSEFE.
- Theorem: For any k, a sunflower instance with k planar graphs admits a QuaSEFE.
 - ▶ 1. Draw *H* planar
 - ▶ 2. Draw each $G_i \setminus H$ planar

Sunflower Instances \checkmark

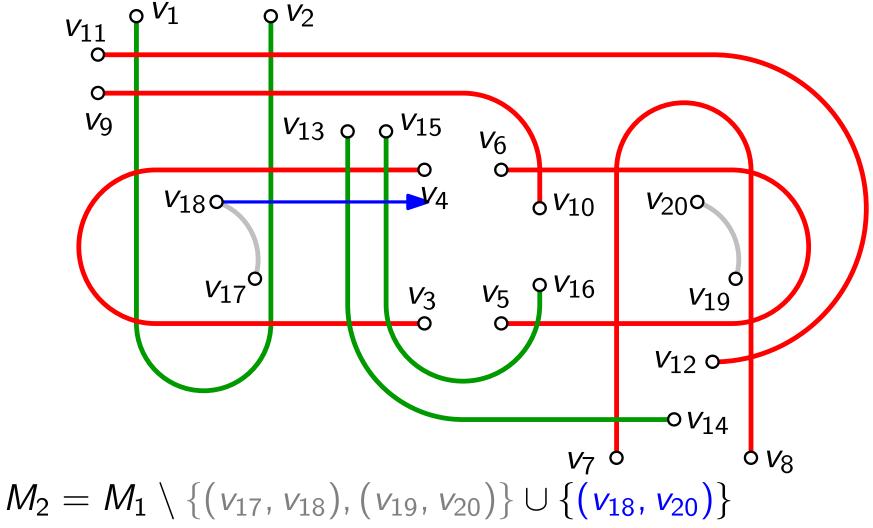
- Sunflower Instance: Planar Graphs G₁,..., G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in H := ∩ G_i)
 - Deciding if SEFE exists is NP-hard [Angelini et al. '15] for $k \ge 3$ [Schaefer '13]
 - Corollary: A sunflower instance with k = 3 planar graphs admits a QuaSEFE.
- Theorem: For any k, a sunflower instance with k planar graphs admits a QuaSEFE.
 - ▶ 1. Draw *H* planar
 - ▶ 2. Draw each $G_i \setminus H$ planar
 - each G_i is drawn with thickness 2

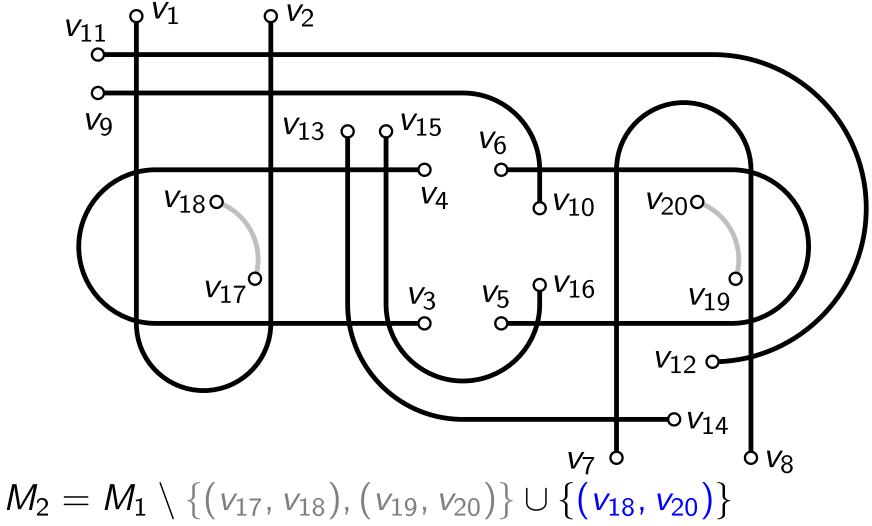


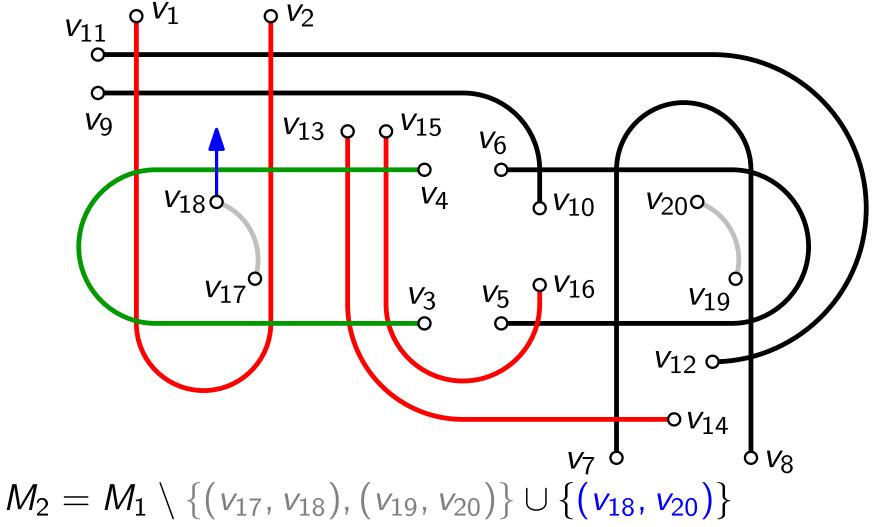


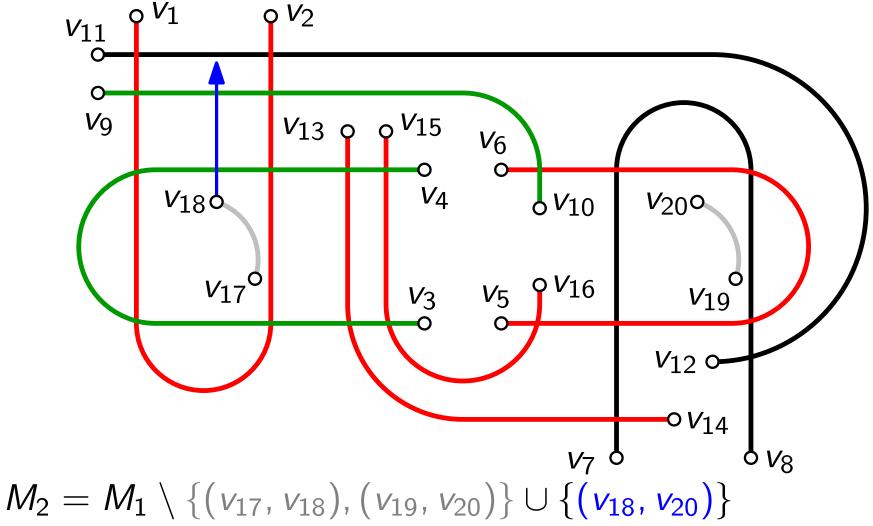


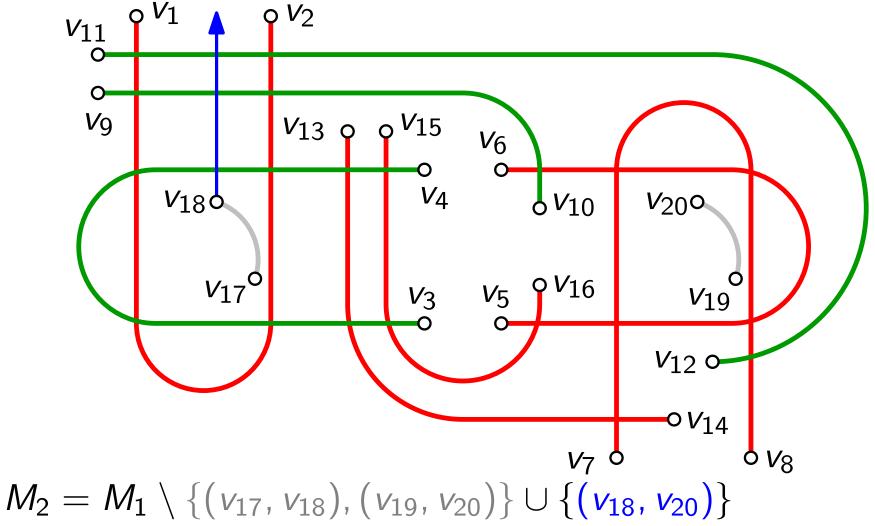












Do the following always admit a QuaSEFE?

two 1-planar graphs

- two 1-planar graphs
- a quasiplanar graph and a matching

- two 1-planar graphs
- a quasiplanar graph and a matching
- three outerplanar graphs

- two 1-planar graphs
- a quasiplanar graph and a matching
- three outerplanar graphs
- four paths

- two 1-planar graphs
- a quasiplanar graph and a matching
- three outerplanar graphs
- four paths
- What is the computational complexity of QuaSEFE?

- ► two 1-planar graphs
- a quasiplanar graph and a matching
- three outerplanar graphs
- four paths
- What is the computational complexity of QuaSEFE?
- Extend to other beyond planar graph classes such as k-planar graphs.

- two 1-planar graphs
- a quasiplanar graph and a matching
- three outerplanar graphs
- four paths
- What is the computational complexity of QuaSEFE?
- Extend to other beyond planar graph classes such as k-planar graphs.
 - Main difficulty: find a similarly catchy name for the problem

Do the following always admit a QuaSEFE?

- two 1-planar graphs
- a quasiplanar graph and a matching
- three outerplanar graphs
- four paths
- What is the computational complexity of QuaSEFE?
- Extend to other beyond planar graph classes such as k-planar graphs.
 - Main difficulty: find a similarly catchy name for the problem

Thank you for your attention!